cpp回溯法(非递归)实现求解n皇后问题

cpp回溯法(非递归)实现求解n皇后问题

输入:n
输出:n皇后的所有方案和方案总数

一、主要思路:

1.1所用数据结构:

  用x数组存放解序列,其中x[i]表示第i行的n皇后放置的列数,x[0]不使用,初始时x[i]=i。用m[i]数组保存x[i]的下一个交换位置(在回溯时使用)。

//x向量记录解空间
vector<int> x;
//m[i]记录每次x[i]的遍历起点,结点i向i+1前进时记录当前x[i]的下一个遍历位置(如当x[1]与x[5]交换时成立,进入x[2]时记录m[1]=5+1),这样以后回溯回x[1]时通过m[1]可以紧接上次未遍历位置开始,初始为m[i]=i;
vector<int> m;

1.2整体思路:

  因为n皇后问题的特点,即所有皇后只能在不同行不同列上,所以解向量为1-n的全排列,将x数组初始化为x[i]=i,每个节点通过与后面所有节点各自交换位置来遍历所有情况。这样可以保证每次都没有两个皇后在同一行或者同一列。每次前进都用当前结点x[i]与x[j]交换(j>=i),若此结点满足条件则前进,前进之前记录当前结点的下一遍历位置m[i]=j+1,用于回溯时继续遍历下一结点。

int nQueens(int n)
{
	//从第一行开始
	int i = 1, sum = 0;
	while(i>0) {
		//对一个x[i]结点尝试与它未尝试的所有交换方式
		int j;
		for (j = m[i];j <= n;j++) {
			//交换
			swap(x[i], x[j]);
			//判断前i个行是否满足条件,若满足则记录此处并前进,不行则回溯
			if (check(i)) {
				//满足条件
				//若找到解则输出并swap回来继续尝试下一个
				if (i == n) {
					for (int k = 1;k <= n;k++) {
						cout << x[k] << " ";
					}
					sum++;
					cout << "\n";
					swap(x[i], x[j]);
				}
				else {
					//满足条件但还未找到解,记录m[i]并前进
					m[i] = j + 1;
					i++;
					break;
				}
			}
			else {
				//不满足条件,交换回来,继续下一个
				swap(x[i], x[j]);
			}
		}
		//此全部尝试完了,回溯时重置i之后的m[i],回溯时要swap回来x[i]的值
		if (j == n+1) {
			m[i] = i;
			i--;
			if (i > 0)
				swap(x[i], x[m[i] - 1]);
			else
				return sum;
		}
	}

	return sum;


}

二、执行结果:

部分执行结果

三、全部源代码

#include <iostream>;
#include <vector>;

using namespace std;
//思路:
//x向量记录解空间
vector<int> x;
//m[i]记录每次x[i]的遍历起点,结点i向i+1前进时记录当前x[i]的下一个遍历位置(如当x[1]与x[5]交换时成立,进入x[3]时记录m[1]=5+1),这样以后时通过m[i]可以紧接上次遍历位置开始,初始为m[i]=i;
vector<int> m;

bool check(int n) {
	//检查第n行的放置是否与前n-1行相容
	if (n <= x.size()-1 && n > 0) {
		for (int i = 1;i < n;i++) {
			if (n - i == abs(x[n] - x[i])) {
				return false;
			}
		}
		return true;
	}
	else {
		return false;
	}
}


int nQueens(int n)
{
	//从第一行开始
	int i = 1, sum = 0;
	while(i>0) {
		//对一个x[i]结点尝试与它未尝试的所有交换方式
		int j;
		for (j = m[i];j <= n;j++) {
			//交换
			swap(x[i], x[j]);
			//判断前i个行是否满足条件,若满足则记录此处并前进,不行则回溯
			if (check(i)) {
				//满足条件
				//若找到解则输出并swap回来继续尝试下一个
				if (i == n) {
					for (int k = 1;k <= n;k++) {
						cout << x[k] << " ";
					}
					sum++;
					cout << "\n";
					swap(x[i], x[j]);
				}
				else {
					//满足条件但还未找到解,记录m[i]并前进
					m[i] = j + 1;
					i++;
					break;
				}
			}
			else {
				//不满足条件,交换回来,继续下一个
				swap(x[i], x[j]);
			}
		}
		//此全部尝试完了,回溯时重置i之后的m[i],回溯时要swap回来x[i]的值
		if (j == n+1) {
			m[i] = i;
			i--;
			if (i > 0)
				swap(x[i], x[m[i] - 1]);
			else
				return sum;
		}
	}

	return sum;


}



int main() {
	int n = 8;
	//初始化解,x[0]不用
	for (int i = 0;i <= n;i++) {
		x.push_back(i);
		m.push_back(i);
	}
	cout<<"\n"<<nQueens(n);
	return 0;
}
第一关的“非递归实现皇后问题”通常是指解决经典的八皇后问题,这个问题要求在一个8x8的国际象棋棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列,以及对角线上。非递归的方式意味着我们要避免使用函数的嵌套调用,而是通过循环和条件判断来逐步尝试每个位置。 以下是一个简单的Python代码示例,使用回溯算法(backtracking)来解决这个问题: ```python def is_safe(board, row, col): # 检查列冲突 for i in range(row): if board[i] == col: return False # 检查左上方对角线冲突 start = max(0, row - col) end = min(len(board) - 1, row + col) for i in range(start, end + 1): if board[i] == col: return False # 检查右上方对角线冲突 start = max(0, row + col) end = len(board) - 1 for i in range(start, end + 1): if board[i] == col: return False return True def solve_n_queens(n, board=None): if board is None: board = [-1] * n if n == 0: print_board(board) return True for col in range(n): if is_safe(board, n - 1, col): board[n - 1] = col if solve_n_queens(n - 1, board): return True else: board[n - 1] = -1 # 回溯,尝试下一个位置 return False def print_board(board): for i, row in enumerate(board): if row != -1: print(f"{row},", end=" ") else: print(".", end=" ") print() # 调用函数并解决8皇后问题 solve_n_queens(8) ``` 在这个代码里,`is_safe()` 函数检查当前位置是否安全,`solve_n_queens()` 通过迭代列来放置皇后,并利用回溯策略处理冲突。当所有皇后都成功摆放后,打印出解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值