题目 1429: 蓝桥杯2014年第五届真题-兰顿蚂蚁
时间限制: 1Sec 内存限制: 128MB 提交: 6100 解决: 2797
题目描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出
输出数据为一个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
思路和代码
思路:直接模拟
m, n = [int(x) for x in input().split()]
ls = list()
for _ in range(m):
ls.append([int(x) for x in input().split()])
x, y, s, k = [x for x in input().split()]
x = int(x)
y = int(y)
k = int(k)
# 设上右下左分别是0123,
if s == "U":
s = 0
elif s == "R":
s = 1
elif s == "D":
s = 2
elif s == "L":
s = 3
for i in range(k):
if ls[x][y] == 1:
s = (s+1)%4
ls[x][y] = 0
else:
s = (s-1)%4
ls[x][y] = 1
if s == 0:
x -= 1
elif s == 1:
y += 1
elif s == 2:
x += 1
elif s == 3:
y -= 1
print("{:d} {:d}".format(x, y))