新版本本地化的fastgpt接入重排模型≥4.8.20

本地原来fastgpt为4.8.6版本,现更新到目前最新版本,有很多区别,这里加以记录:

1.更新

在原先的docker-compose文件中,修改fastgpt的image版本:

  fastgpt:
    container_name: fastgpt
    # image: ghcr.io/labring/fastgpt:v4.8.6 # git
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.8.21-fix 

在该文件目录中执行即可:

docker-compose pull
docker-compose up -d

2.接入模型

2.1 embedding模型

由老版本更新过来,点击知识库会提示索引模型未部署,因为20后的版本将原先在config文件中接入模型的方式统一做到模型提供功能中,需要我们修改:

官方已经内置大量模型,我们只需在模型配置中寻找我们所需的模型,启动即可:

然鹅我们是本地化部署,这样操作只是提供了一个接口,并没有实际功能,我们需要本地部署对应模型,再接入,这里以m3e模型为例子:


docker run -d -p 6008:6008 --gpus all --name m3e --network fastgpt_fastgpt stawky/m3e-large-api

这里需要用到前面提到的docker内部网络名字,后续就可以用m3:6008来调用,在oneapi中填写如下,记得要填写密钥,测试显示如右上角即可:

在fastgpt中点击新增模型-索引模型,如此填写即可:

2.2 重排模型

同样,下载bge重排模型:(官方文档中是v0.1,这里需要改为v0.2

docker run -d --name reranker -p 6006:6006 -e ACCESS_TOKEN=sk-aaabbbcccdddeeefff --gpus all  --network fastgpt_fastgpt registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2

再去fastgpt的config文件中添加

  "reRankModels": [
    {
      "model": "bge-reranker-base",
      "name": "reranker", 
      "charsPointsPrice": 0,
      "requestUrl": "https://172.18.0.10:6006/v1/rerank",
      "requestAuth": "sk-aaabbbcccdddeeefff"
    } 
  ],

记得在fastgpt设置界面填写key:

一般重排结果为True就说明成功了:(我电脑配置不够,运行很卡

错误方法小记录:

ollama+embedding模型的错误部署

再去oneapi中添加渠道,可以参考以前的操作,右上角这样一般就出错了:阿巴阿巴

参考:

V4.8.21 | FastGPT

使用docker-compose一键本地化部署fastgpt,并连接本地ollama部署的大模型_ollama docker-compose-CSDN博客

使用docker通过ollama本地化部署qwen大模型_docker ollama qwen-CSDN博客

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值