新版本本地化的fastgpt接入重排模型≥4.8.20

本地原来fastgpt为4.8.6版本,现更新到目前最新版本,有很多区别,这里加以记录:

1.更新

在原先的docker-compose文件中,修改fastgpt的image版本:

  fastgpt:
    container_name: fastgpt
    # image: ghcr.io/labring/fastgpt:v4.8.6 # git
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.8.21-fix 

在该文件目录中执行即可:

docker-compose pull
docker-compose up -d

2.接入模型

2.1 embedding模型

由老版本更新过来,点击知识库会提示索引模型未部署,因为20后的版本将原先在config文件中接入模型的方式统一做到模型提供功能中,需要我们修改:

官方已经内置大量模型,我们只需在模型配置中寻找我们所需的模型,启动即可:

然鹅我们是本地化部署,这样操作只是提供了一个接口,并没有实际功能,我们需要本地部署对应模型,再接入,这里以m3e模型为例子:


docker run -d -p 6008:6008 --gpus all --name m3e --network fastgpt_fastgpt stawky/m3e-large-api

这里需要用到前面提到的docker内部网络名字,后续就可以用m3:6008来调用,在oneapi中填写如下,记得要填写密钥,测试显示如右上角即可:

在fastgpt中点击新增模型-索引模型,如此填写即可:

2.2 重排模型

同样,下载bge重排模型:(官方文档中是v0.1,这里需要改为v0.2

docker run -d --name reranker -p 6006:6006 -e ACCESS_TOKEN=sk-aaabbbcccdddeeefff --gpus all  --network fastgpt_fastgpt registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2

再去fastgpt的config文件中添加

  "reRankModels": [
    {
      "model": "bge-reranker-base",
      "name": "reranker", 
      "charsPointsPrice": 0,
      "requestUrl": "https://172.18.0.10:6006/v1/rerank",
      "requestAuth": "sk-aaabbbcccdddeeefff"
    } 
  ],

记得在fastgpt设置界面填写key:

一般重排结果为True就说明成功了:(我电脑配置不够,运行很卡

错误方法小记录:

ollama+embedding模型的错误部署

再去oneapi中添加渠道,可以参考以前的操作,右上角这样一般就出错了:阿巴阿巴

参考:

V4.8.21 | FastGPT

使用docker-compose一键本地化部署fastgpt,并连接本地ollama部署的大模型_ollama docker-compose-CSDN博客

使用docker通过ollama本地化部署qwen大模型_docker ollama qwen-CSDN博客

### FastGPT 部署重排模型方法 FastGPT 是一个基于大语言模型的知识库问答系统,提供了数据处理、模型调用等功能,能够快速搭建和训练 AI 助手[^1]。对于部署重排序(rerank)模型FastGPT 平台的过程涉及多个方面。 #### 准备工作 确保环境配置正确无误,包括但不限于 Python 环境版本、依赖包安装情况等。这一步骤至关重要,因为任何配置上的错误都可能导致后续操作失败[^2]。 #### 获取兼容的 Rerank 模型 如果遇到因 rerank 模型版本与 FastGPT 不匹配而导致的问题,则需考虑升级 FastGPT 至更高版本或寻找适用于当前 FastGPT 版本的 rerank 模型。已知的是,在 Windows 本地环境中较高版本的 FastGPT 上运行特定 rerank 模型是可以成功的案例存在。 #### 修改配置文件 针对 FastGPT 和所选 rerank 模型之间的接口参数设置进行调整,使两者之间能顺利通信并完成预期功能。此部分通常涉及到修改项目中的配置文件来指定新加入组件的位置及其访问方式。 #### 测试集成效果 最后,在完成了上述准备工作之后,应当进行全面测试以验证整个系统的稳定性和性能表现是否达到预期目标。可以通过构建一些典型场景下的查询请求来进行实际检验,并观察返回结果的质量。 ```bash # 假设这是启动服务命令的一部分 python run_server.py --model_path ./models/rerank_model/ ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值