吴恩达机器学习课后lab C1_W2_Lab01_Python_Numpy_Vectorization_Soln(向量元组)

代码块1(创建)

a = np.zeros(4);                print(f"np.zeros(4) :   a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")
a = np.zeros((4,));             print(f"np.zeros(4,) :  a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")
a = np.random.random_sample(4); print(f"np.random.random_sample(4): a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")

输出:
np.zeros(4) : a = [0. 0. 0. 0.], a shape = (4,), a data type = float64
np.zeros(4,) : a = [0. 0. 0. 0.], a shape = (4,), a data type = float64
np.random.random_sample(4): a = [0.24660509 0.65617874 0.20796114 0.99258047], a shape = (4,), a data type = float64

代码块2

a = np.arange(4.);              print(f"np.arange(4.):     a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")
a = np.random.rand(4);          print(f"np.random.rand(4): a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")

输出:
np.arange(4.): a = [0. 1. 2. 3.], a shape = (4,), a data type = float64
np.random.rand(4): a = [0.94521094 0.35495575 0.85364377 0.14953348], a shape = (4,), a data type = float64

np.arange()
函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是6,步长为1。
参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况
1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数

代码块3

# NumPy routines which allocate memory and fill with user specified values
a = np.array([5,4,3,2]);  print(f"np.array([5,4,3,2]):  a = {
     a},     a shape = {
     a.shape}, a data type = {
     a.dtype}")
a = np.array([5.,4,3,2]); print(f"np.array([5.,4,3,2]): a = {
     a}, a shape = {
     a.shape}, a data type = {
     a.dtype}")

输出:
np.array([5,4,3,2]): a = [5 4 3 2], a shape = (4,), a data type = int32
np.array([5.,4,3,2]): a = [5. 4. 3. 2.], a shape = (4,), a data type = float64
也可以自己指定数据类型,为元组的第一个

#vector indexing operations on 1-D vectors
a = np.arange(10)
print(a)
#访问元素
print(f"a[2].shape: {
     a[2].shape} a[2]  = {
     a[2]}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值