ViT-DeiT:用于乳腺癌组织病理图像分类的集成模型

两种预训练Vision Transformer模型的集成模型,即Vision Transformer和数据高效视觉Transformer(Data-Efficient Image Transformer)。此集成模型是一种软投票模型

近年来,乳腺癌的分类研究主要集中在超声图像分类、活检数据分类、组织病理图像分类。


Transformer广泛应用于自然语言处理(NLP),Transformer模型的结构包括编码器和解码器, ViT 结构中不需要解码器 。ViT结构仅由用于图像处理的编码器组成。编码器组件由归一化层、多头注意力层和前馈层组成。多头注意力是自注意力的一种,其功能是从各个方面提供对特定信息的注意力。

在ViT模型中,每个图像在输入编码器之前都会经过线性嵌入层。嵌入层会将图像划分为大小相等的块,这些块被展平为一维向量。嵌入的位置被添加到展平的补丁中,并且添加嵌入图像的类。编码器处理这些输入,从而得到输出。

然后,输出通过MLP头部结构,该结构执行分类任务。类是MLP头结构的输出,MLP头部结构由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值