6.7.31 使用端到端训练的基于 EfficientNet 的卷积网络在双视图乳房 X 线摄影中进行乳腺癌诊断

最好的技术之一进行了两次迁移学习:第一种是使用在自然图像上训练的模型来创建“块分类器”,对子图像进行分类;第二种是使用块分类器扫描整个乳房 X 光检查并创建“单视图全图像分类器”。建议进行第三次迁移学习,以获得一个“双视图分类器”,以使用两个乳房 X 光检查视图:双侧头尾和内外斜向。

使用 EfficientNet 作为模型的基础。使用 CBIS-DDSM 数据集对整个系统进行“端到端”训练。为了确保统计稳健性,我们使用以下方法对系统进行了两次测试:(a) 5 倍交叉验证;(b) 数据集的原始训练/测试划分。使用 5 倍交叉验证达到了 0.9344 的 AUC(在 ROC 的等错误率点上,准确度、灵敏度和特异性为 85.13%)。使用原始数据集划分,技术实现了 0.8483 的 AUC。

1. 引言

乳房 X 线照片必须由经验丰富的放射科医生进行解读,以降低错误率。

在自然图像中,定义图像类别的目标占据了很大的区域。这不会发生在乳房 X 光检查上,其中癌症组织可能只占据很小的区域。因此,直接训练 CNN 或进行传统的迁移学习来对乳房 X 光检查进行分类通常效果不佳。

Shen 等人 [4] 提出了一个克服这一挑战的好主意,即进行两次迁移学习。 第一个使用在 ImageNet [5] 自然图像上训练的模型来初始化“补丁分类器”,该分类器将小乳房 X 光片补丁分为五类:背景、良性钙化、恶性钙化、良性肿块和恶性肿块。第二个使用补丁分类器初始化“单视图全图像分类器”,该分类器使用具有癌症状态的整个乳房 X 光片进行端到端训练。换句话说,首先构建补丁分类器,因为它比构建整个图像分类器更容易​​。 随后,补丁分类器扫描整个乳房 X 光片,生成描述乳房 X 光片每个区域存在不同类型病变的可能性的属性图。整个图像分类器使用这些图进行最终分类并进行端到端训练。

1.1 文章贡献

在本文中,提出了一些对 Shen 等人的方法的改进,以提高其性能:

  • 原始技术使用 ResNet [6] 和 VGG [7] 作为基础模型。用较新的 EfficientNet [8] 替换了它们。
  •  标准乳房 X 线摄影包括每个乳房的两个视图:双侧头尾 (CC) 和内外斜向 (MLO)。原始算法一次只处理一个视图,为了将两个视图考虑在内,它只是对独立处理的两个视图的分数取平均值。 除了原来的两个视图之外,我们的技术还执行了第三个迁移学习,以将两个视图考虑在内。 使用单视图分类器初始化“双视图分类器”,然后使用具有癌症状态的双视图乳房 X 线摄影对整个系统(贴片、单视图和双视图分类器)进行端到端训练。

2. 文献综述

2.1 基于 CNN 的乳腺癌诊断

Kooi 等人 [12] 比较了使用最先进的经典方法、基于 CNN 的方法和放射科医生对乳房 X 线摄影 ROI 进行分类的结果。他们得出的结论是,CNN 的性能与放射科医生相当,并且优于经典方法。

Rodriguez 等人 [13] 使用来自美国和欧洲不同机构的 9 个数据集,将基于 CNN 的商业系统 (Transpara 1.4.0) 与 101 名放射科医生进行了比较。 AI 系统的 AUC 为 0.840,而放射科医生的平均 AUC 为 0.814。因此,AI 优于放射科医生的平均水平,但其表现不如最好的放射科医生。

Wu 等人 [16] 设计了一个四视图深度学习。使用 4 个视图预测癌症的 AUC 为 0.895,高于放射科医生的平均 AUC 0.778。 虽然 Wu 等人的工作和我们的工作都使用多视图对癌症进行分类,但存在根本差异。

2.2 公共乳房X光检查数据集

DDSM [17] 是最大的公共乳房 X 线照片数据集,包含 2,620 次检查,包含正常、良性和恶性病例以及经过验证的病理信息。 CBIS-DDSM [18] 是 DDSM 的更新和精选版本,经过组织以使其更易于使用。它包含 3,103 张乳房 X 线照片。表 1 总结了此数据集中的乳房 X 线照片数量。

InBreast 公开数据集仅包含 115 个病例,共 410 张图像 [19],规模太小,无法用于深度学习。

最近发布的公开数据集 CSAW-M [20] 未将病变分为正常/良性/恶性类别,因此无法用于我们的研究。其他近期公开数据集(如 KAU-BCMD [21] 或 VinDr-Mammo [22])缺乏经过验证的病理信息,在撰写本文时尚未完全可用。 

2.3 比较 CAD 性能

当将 CBIS-DDSM 数据集随机划分为 5 个子集,并使用 4 个子集训练我们的双视图分类器并在剩余的集合上进行测试时,获得的 5 个 AUC 从 0.90 到 0.99 不等(4 个具有 TTA(数据增强) 的模型,见表 5)。因此,如果在随机划分中很幸运,双视图分类器将达到惊人的 0.99 AUC,如果我们运气不好,它只会达到 0.90。这两个值都不能反映我们系统的真实性能。因此,使用随机训练/测试划分获得的结果不可靠。

使用 CBIS-DDSM 的官方训练/测试划分,获得的 AUC 非常小。Shen 等人 [4] 使用

  • 14
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值