乳腺组织病理学图像中浸润性导管癌的增强CNN结构检测

        浸润性导管癌(Invasive Ductal Carcinoma, IDC)被认为是最常见的乳腺癌亚型,早期发现浸润性导管癌对于制定治疗方案和改善治疗效果至关重要。因此,IDC的自动识别将有助于病理学家的诊断,并提供有价值的第二意见。该数据集包含277,524个补丁,其中IDC阴性图像198,738个,IDC阳性图像78,786个。


1. 引言

        乳腺癌由乳腺肿块组织发展而来,导致正常乳腺的病变。浸润性导管癌(Invasive ductal carcinoma, IDC)是一种更为普遍的BC类型,占所有BC病例的80%以上。IDC是一种起源于乳管并已扩散到乳管以外的脂肪组织的癌症。

        活检被认为是诊断BC的金标准。它可以判断可疑区域是否癌变。活检是由病理学家通过组织学切片的显微视觉检查完成的。早期发现对选择合适的护理方案和提高患者的存活率起着至关重要的作用。因此,需要采用自动方法来节省时间并减少人为错误的可能性。近年来,人们致力于应用人工智能来检测和预测多种癌症。计算机辅助诊断(CAD)系统通常用于识别和区分几种不同类型的异常。

        基于深度学习(DL)的技术最近为各种应用提供了最先进的输出,包括目标识别、面部和语音识别、语义分割、行为识别、自然语言处理和医学成像。然而,由于缺乏足够的公开标记数据库,深度学习在医学成像中的应用存在不足。由于过度拟合问题,从头开始训练模型是具有挑战性的。深度学习已应用于多种医学成像形式,包括病理成像,具有出色的识别、分割和检测效果。在某些情况下,基于DL的应用程序已经成为病理学家和医生临床研究工作流程的一部分。

2. 背景

        卷积神经网络(CNN)是一种广泛用于图像和视频识别、语音和自然语言处理的神经网络形式。CNN的生物学灵感来源于蜘蛛猴和猫的视觉皮层。由于其在图像中模式识别的能力,CNN主要用于图像处理。如图3所示,CNN架构一般由三种不同方式的层叠加而成:

2.1 卷积层

        CNN的主层。这一层负责提取图像特征,如颜色和边缘。这一层为我们提供了一个视觉上实现数据集中图像的网络。这一层的目的是使用可学习的核(过滤器)。这些核通过对输入的空间维度进行卷积来生成输出(特征映射)。内核标识为(1): 

\mathrm{y_i~=~relu(\sum k_{ij}~*~x_i)} 

        其中y_j为第 j 个输出特征映射,k_{ij} 为卷积核,x_i 为第 i 个输入特征映射。而Relu()函数则用于解决卷积过程输出中的非线性问题。

2.2 池化层

        池化层的主要目的是降低卷积特征映射的维数,降低模型的参数数量和计算能力复杂度成本。

2.3 全连接层

        CNN架构的顶层,用于在高级特征之间建立动态关联。此时,维度信息被忽略。因此,池化层的输出被馈送到全连接层,全连接层将它们聚合成一个特征向量,然后将最后一层的输出用于类预测。

3. 方法

        为了开发我们的深度学习模型,我们提出了一个管道。该管道分为几个阶段,从接收未处理的数据集开始,到通过训练模型进行类别预测结束。管道中每一阶段的输出被送入下一阶段。该管道由数据收集、数据预处理、模型开发、模型训练和模型评估组成。下面将深入解释拟议方法的流程: 

3.1 数据集预处理

        数据集的一个明显问题是类的不均匀分布(一个不平衡的数据集)。IDC阴性类数据量大约是恶性类数据量的2.5倍,这对CNN模型结果造成了损害。因此,我们使用“Random Under Sampler”使用失衡学习库对IDC负类进行下采样。图5为下采样前后的类分布。为了最小化计算成本和加快训练速度,对所有图像进行归一化处理。此外,通过以这种方式对数据进行标准化,优化器将更快地收敛。

        根据Pareto原理,将比例为80%的数据划分为训练数据集,20%的数据划分为测试数据集。然后我们将测试集平均分成两组,一组在训练和超参数整定过程中作为验证集检查过拟合,另一组在训练和超参数整定完成后用于测试模型精度。为了优化我们的运行时数据,使用各种增强技术,防止模型过度拟合,并让它泛化并实现高性能。

        数据增强被认为是一种在数据集层面上进行的正则化类型,在不需要对所提出的方法进行任何修改的情况下,通过增强训练数据集来减少过拟合问题并提高泛化性能。医学图像的数据集通常很小,很难收集。然而,卷积神经网络已被证明在肝损伤分类、脑扫描分析、皮肤问题分类和各种医学图像问题方面具有良好的数据增强性能。

3.2 模型设计

        模型充当一个函数,将数据作为输入并返回类标签作为输出。研究中,尝试了两种不同的方法。在第一个模型中,尝试使用随机初始化的自定义CNN模型架构。如图6所示,该模型由6个卷积层组成,具有一个Relu激活函数和两个完全连接层。此外,在每两个卷积层之后插入一个Maxpooling层。图6说明了每个层的输入和输出形状为(无、宽度、高度、通道数)。

        第二种方法中,使用了其他一些预定义的先进架构,如Xception[29]、ResNet50[30]、NASNetLarge和DenseNet201[31]。

3.3 模型训练

        CNN在训练阶段使用学习或优化算法来调整神经网络的权重。学习算法将分类误差反馈给网络,以调整核和权值。使用Adam优化技术,并且为了预测类(它是二进制的),Sigmoid被用作输出层的激活函数。训练过程开始时的学习率值为0.001,每5个epoch降低0.5倍。

  • 12
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值