深度学习
文章平均质量分 93
清园暖歌
这个作者很懒,什么都没留下…
展开
-
OrangePi AIpro 快速上手初体验——接口、样例和目标检测
OrangePi AIpro开发板是香橙派联合华为精心打造的高性能 AI 开发板,其搭载了昇腾 AI 处理器,可提供 8TOPS INT8 的计算能力,内存提供了 8GB 和 16GB两种版本。可以实现图像、视频等多种数据分析与推理计算,可广泛用于教育、机器人、无人机等场景。原创 2024-05-29 18:46:25 · 2299 阅读 · 1 评论 -
基于MAX78000的手势识别人机交互系统
(项目有点简陋,本来以为时间很长,开头就拿到板子的时候搞了一段时间,中间一直没碰。。。。等到最后发现时间快截止了的时候又和期末考试时间撞一起了,只能匆匆完结。。。模型是基于resnet18进行修改的,只保留了最后修改完的代码(1)要使用不同数据集的话,要在 ai8x-training-data 下里面的路径下存放数据集,并生成txt文件(2)ai8x-training-datasets 下的 gesture.py 文件里修改数据读取路径。原创 2024-05-17 17:30:22 · 1114 阅读 · 0 评论 -
Github仓库使用方式
这是少了一个known_hosts文件,本来密钥文件应该是三个,现在是两个,便报了这样的错误,此时选择 yes回车 之后,便可,同时生成了缺少了的known_hosts文件。,这里会在当前shell中启动一个默认shell,ssh-agent程序会在子shell中运行,在有些linux系统中,默认shell通常为bash,上述命令通常可以直接写成。这两个就是SSH Key的秘钥对,id_rsa是私钥,不能泄露出去,id_rsa.pub是公钥,公钥可以放心地告诉任何人。解决方法:在终端执行。原创 2024-01-15 14:29:40 · 2236 阅读 · 0 评论 -
YOLO——算法学习
选择 Faster-rcnn之类还是 YOLO 都是根据任务需求来定的YOLO一般速度快,一个cnn的回归下来就完事,M-rcnn 一般只有5fps,达不到实时的要求YOLO也可以自己构建网络,网络越复杂,速度越慢;而网络越简单,速度越快衡量算法的指标:fps、 mAPmAP指标:综合衡量检测效果精度:检测到的东西和实际的框吻不吻合召回率(recall):有没有一些要检测到的框没检测到而精度和recall在很多问题上都是矛盾的,一个高了,另一个就低了,所以要用mAP值IOU。原创 2023-06-20 10:59:11 · 84 阅读 · 0 评论 -
YOLO相关代码、论文
现有的深卷积神经网络(CNNs)需要一个固定大小(如224×224)的输入图像。这种要求是“人为的”,可能会降低对任意大小/比例的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池策略“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP网,它可以生成一个固定长度的表示,而不考虑图像的大小/比例。金字塔池对对象变形也很健壮。有了这些优势,SPP网应该在总体上改进所有基于CNN的图像分类方法。原创 2023-05-16 16:25:59 · 57 阅读 · 0 评论 -
Pytorch——anaconda环境下安装GPU版本
在官网查找版本时,我和 .whl 下载网页进行了对比,因为可能有的版本在 .whl 下载网也中没有,所以我找了相对较新且都能下载的。可能没有对应cuda版本的pytorch,所以即使你版本匹配,也可能会装cpu版的,这就导致测试时,永远是。然后我要安装的anaconda环境下,python版本是3.8的,所以我选择下载。这里为什么要直接对 .whl 文件进行下载,因为我之前修改了清华源下载,而。下载完成后我直接把它们放到了我环境的。首先卸载之前安装的 torch。可以看到,我的CUDA 是 11.1版本。原创 2023-01-28 10:25:22 · 990 阅读 · 0 评论 -
深度学习第四课——目标检测(week 3)
他是一个向量,第一个组件Pc表示是否含有对象,即如果对象属于前三类,则Pc=1;如果是背景,则Pc=0。可以这样理解Pc,他表示被检测对象属于某一分类的概率,背景分类除外,如果检测到对象,就输边界框参数bx,by,bh,bw ,如果Pc=1,则输出c1,c2,c3,表示该对象属于1-3的哪一类训练神经网络的损失函数,其参数为类别Y 和网络输出Y^ ,损失函数可以表示为L(Y^, Y);这里假设平方误差的损失函数,原创 2023-01-13 22:44:03 · 944 阅读 · 0 评论 -
深度学习第四课——深度卷积网络(week 2)
构造卷积层时,你要决定过滤器的大小究竟时1×3,还是3×3,还是5×5,或者要不要添加池化层,而Inception网络的作用就是代替你来做决定,虽然网络架构因此变得更加复杂,但网络表现却非常好这里池化后维度变了,是又进行了一次 1×1卷积,基本思想是:Inception网络不需要认为决定使用哪个过滤器, 或是否需要池化,而是由网络自行确定这些参数,你可以给网络添加这些参数的所有可能的值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合,但有个问题就是计算代成本。原创 2022-11-27 22:20:03 · 1484 阅读 · 0 评论 -
深度学习第四课——卷积神经网络(week 1)
为了检测出这个 6 ×6 图像的垂直边缘,构建一个 3×3 的过滤器(filter),或者称为核,进行卷积运算 *,输出得到一个 4×4 的矩阵,里面元素的运算过程如下图所示,以第一行第一列的元素为例:这个即为:垂直边缘检测器不同编程框架下的卷积运算:python:conv_forward 函数tensorflow:tf.nn.conv2d 函数Keras:Conv2D 函数为什么这个可以做 垂直边缘检测?如图,10像素表示 偏亮一点。原创 2022-11-23 16:58:12 · 1285 阅读 · 0 评论 -
深度学习21天——准备(环境配置)
参考这位博主的文章,因为 tensorflow 2.3 只兼容python 3.5~3.7,而我的anconda中安装的默认版本是3.8,所以安装3.6版本。直接复制cudnn 解压文件夹下的所有到cuda 的安装路径,因为我是自定义选择的路径,创建了两个文件夹,所以都复制进去了。中间安装时电脑莫名重启了一次后就一直下载安装包失败,所以尝试 local 安装,但是又出现安装失败,发现是。的错误,是因为权限的问题,看看上面的命令有没有加上。至此,环境配置应该。失败,参考下面博主的文章,在自定义安装选项将。..原创 2022-08-03 10:28:01 · 2237 阅读 · 0 评论 -
Jupyter Notebook(Anaconda)——多个环境分别修改默认打开目录(深度学习第一周番外篇)
但实际上,因为我修改过,它问了一次y/n,当时没注意,其实他是询问是否覆盖,我当时直接y了就给我覆盖了,导致我之前的修改无效了,anaconda环境打开的目录也恢复成了默认路径。博主之前一开始安装anaconda时,曾经修改过默认打开目录,采用的方法是直接修改,即找到文件位置-属性-快捷方式,删除。将第二行的#和空格去掉,修改自己的路径,该方法确实可以,但还是无法满足我两个环境分别打开两个目录的需求。当我改回并把重新把刚修改的一行代码注释掉时,发现两个环境都恢复了默认目录。...............原创 2022-08-02 15:26:57 · 1862 阅读 · 2 评论