计算机视觉
文章平均质量分 75
清园暖歌
这个作者很懒,什么都没留下…
展开
-
YOLO——算法学习
选择 Faster-rcnn之类还是 YOLO 都是根据任务需求来定的YOLO一般速度快,一个cnn的回归下来就完事,M-rcnn 一般只有5fps,达不到实时的要求YOLO也可以自己构建网络,网络越复杂,速度越慢;而网络越简单,速度越快衡量算法的指标:fps、 mAPmAP指标:综合衡量检测效果精度:检测到的东西和实际的框吻不吻合召回率(recall):有没有一些要检测到的框没检测到而精度和recall在很多问题上都是矛盾的,一个高了,另一个就低了,所以要用mAP值IOU。原创 2023-06-20 10:59:11 · 84 阅读 · 0 评论 -
opencv笔记(13)—— 停车场车位识别
car1.h5 是训练后保存的模型class_directionary 是0,1的分类。原创 2024-06-01 10:54:56 · 1620 阅读 · 0 评论 -
计算机视觉(5)—— 图像分类
优化:用1×1卷积先降维减少计算量,再升维和前面的残差块组合。全连接层参数过多,所以要改进。VGG是大多数的主干模型,Google的可扩展性相对差一点。GAP:全局平均池化。FLOPs这里是指需要的计算量。这里不一定分组卷积就比整个卷积强。在梯度要消失的地方,再次传入。原创 2023-05-09 21:55:27 · 737 阅读 · 1 评论 -
计算机视觉(4)—— 未有深度学习之前
也就是说对于每个分类器来说,我扔掉的东西就一个不是人脸,不是正例,保留下来的还不确定,就这样的过程叠加若干的,每个分类器也不一样,最后剩下的才是真正的正例。就是画的框就是背景和前景的颜色分布都有了,然后找这些颜色分布找若干个聚类中心,框之外的颜色就是背景,背景也找若干个聚类中心;要做的就是在不断的迭代过程中,框住的颜色里属于背景的就会逐渐被归到框外的聚类中心上,框里面的就仅仅属于自己。梯度每落在20度里面的数量,如果是85度,再70和90度之间,就用插值,到70度是15,到90度是5。原创 2023-05-10 21:21:49 · 601 阅读 · 0 评论 -
计算机视觉(3)—— 图像特征提取
相差很小,但是DoG计算量小很多,差分高斯就是不同高斯核滤波,相减。其实是在找不同尺度上的特征,小的是在找原图的大特征。斑点就是二阶导数取最大值、最小值的地方。LoG:先高斯,再拉普拉斯。原创 2023-05-03 15:47:12 · 748 阅读 · 0 评论 -
计算机视觉(2)——图像预处理
图像预处理实际就是一个图像增强的过程:空间域:点运算:就是基于直方图对图像整体的色差进行调整,对一个点颜色进行调整,跟周围或多或少也有点关系形态学运算:腐蚀、膨胀临域运算:每个点跟他周围的点进行比较或一块进行计算把空间域映射到频率域,对于我们这里来说,意义就是快速计算卷积傅里叶变换小波运算。原创 2023-05-01 15:51:03 · 5080 阅读 · 0 评论