Tableau学习——计算字段

本文介绍了如何在数据分析中创建计算字段,包括新建基础字段如盈利情况,粒度聚合的度量与维度应用,以及比率计算的正确方法。同时提及了查看详细级别表达式的需求,最后提供了一个数据下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1计算字段基础

新建的计算字段会新建一列,不会影响原本数据集

再创建一个复杂一点的:总利润>0表示盈利了

这样就可以直观看到各国家盈利情况啦:

2粒度 聚合 比率

(1)粒度:数据颗粒浓度

(2)聚合:分为度量聚合(默认总计)、维度聚合

分析——取消聚合度量:下面就会显示不聚合的效果:把每个数据点都显示出来了,而不是显示“总和”,两个坐标参数都没有“总和”这个度量聚合了。

(3)比率:先求比值还是先求和有很大的区别

创建一个分层结构,两个比率计算字段

很明显聚合类的计算比率方式才是正确的:

3详细级别表达式

查看这个地区数据是如何计算得来及完整数据

。。。

数据下载:

链接:https://pan.baidu.com/s/19xPYhE2m1_2rbUs3e4siWA?pwd=k98o 
提取码:k98o

### Tableau 数据可视化入门教程 #### 什么是TableauTableau 是一种强大的数据可视化工具,它允许用户通过拖放操作快速创建交互式的图表和仪表板。它的设计旨在帮助人们轻松地分析、理解和共享数据[^1]。 #### Tableau 的主要功能 - **数据连接**:支持多种数据源,包括Excel文件、CSV文件、SQL数据库以及云服务提供商的数据。 - **实时分析**:提供即时数据分析能力,使用户能够迅速查看并理解他们的数据。 - **高级计算**:内置丰富的函数库用于执行复杂的计算,例如日期运算、字符串处理等。 - **协作分享**:可以将工作簿发布到服务器上与其他同事共享,促进团队合作。 #### 基础概念 为了有效地利用Tableau进行数据可视化,了解以下几个基本术语非常重要: - **维度 (Dimensions)** 和 **度量 (Measures)** :这是两种不同类型字段,在构建视图时起着核心作用。通常来说,“谁”或者“什么”的问题是关于维度;而涉及数量多少则属于度量范畴。 - **标记卡 (Marks Card)** :控制图形中的各个元素样式的地方,比如颜色填充、大小调整等等。 #### 创建第一个可视化项目 以下是使用Tableau制作简单柱状图的过程概述: 1. 打开软件后加载所需数据集; 2. 将感兴趣的变量分别拖放到列架(Columns Shelf)与行架(Rows Shelf),形成初步布局框架; 3. 调整参数设置直至达到预期效果为止——这可能涉及到更改图表类型、应用过滤器等功能模块的操作步骤。 下面是一段简单的 Python 脚本示例,展示如何借助 pandas 库读取 CSV 文件并将结果导出成适合导入至 tableau 中使用的格式: ```python import pandas as pd # 加载数据 data = pd.read_csv('example.csv') # 处理数据... processed_data = data.groupby(['Category']).sum() # 导出为新的 csv 文件供 tableau 使用 processed_data.to_csv('output_for_tableau.csv') ``` 此脚本仅作为演示用途,实际应用场景下还需要考虑更多细节问题,如缺失值填补策略的选择或是异常检测机制的设计等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值