Tableau-BI仪表盘搭建

目录

经营数据总览

经营数据详情

每日营收数据

每日流量数据

新老客占比

平台占比

门店占比

投放情况

订单分布

配送分布

汇总搭建仪表板

构思仪表盘布局


经营数据总览

数据总览表,显示的是数据,就拖入文本中,其他同样加入到已经生成的文本表格中:

经营数据详情

各门店的经营情况,就在总览表的基础上,按照“门店”展开就可以了:

每日营收数据

要想两个度量数据显示在一个图里面,不是加到行/列的位置,加到行/列会变成两个图:

是就直接往坐标轴加:

但是这样共用一个坐标轴,如果数据差距很大,可以利用双轴共用。(下一个表就介绍了)

每日流量数据

1)创建成交率、进店率这两个新字段。

2)设置为百分比

3)此时如果想同时显示在一个图里面就不合理了,因为数据差距太大:

4)应该先分开显示,再显示为双轴

百分比和大数值分开显示:

然后双轴

然后调整成条形图,降低颜色饱和度和大小,让“曝光人数”成为背景(弱化,突出率的主题)

新老客占比

90天内没有下单——新客,其他——老客

IF IFNULL([Order 90D],0)=0 then'新客'

ELSE '老客'

END

新老客区分饼图颜色,订单数区分饼图角度大小:

可以添加工具交互提示,但不影响饼图显示:

变为环形图:

1)先复制出两个饼图

2)将第二个饼图的属性值全部去掉,然后大小拉小点,颜色变为白色,然后双轴——环形图就差不多了

3)调整坐标轴细节:将坐标轴和线全部去掉

平台占比

在上面新老客占比的基础上替换一下属性:

将平台名称改为中文:右键——别名

门店占比

在上面的基础上改一下颜色显示属性就行了:

为什么只显示两个门店?

答:因为之前进行了日期筛选,并应用到了所有工作表!

投放情况

两个品牌每天的投放情况

订单分布

1)查看每天每小时的下单数量

2)每小时下单数的差别

将下单日期时间来区分颜色——改为离散,小时

3)改为区域,完事

配送分布

1)先将配送地点显示,再由自建主键(订单信息)展开

2)由距离区分颜色——先进行距离分组

综上,各板块就建完了

汇总搭建仪表板

右下角第二个——新建仪表板

各种拖拉拽:

各种改颜色:

1)回原表改

2)仪表板中直接改填充格式

地图摁住F可以选区

构思仪表盘布局

●    纵向布局

从上到下按逻辑展开

●    横向布局

有一到两个主图,其他补充信息

●    没有很好的想法,可以多去社区找灵感

https://public.tableau.com/zh-cn/gallery/?tab=viz-of-the-day&type=viz-of-the-day

●    加“亿点点” 细节

联动筛选

边框

简化:筛选器、网格线

●    填充:使用空白调整布局

●    字体:标题尽量统一为微软雅黑

●    配色

修改工作表颜色

         修改仪表盘底色

●    配色方案

1)取logo颜色

2)纯深色or纯暖色

●    参考设计网站

●    设计师必存的101种配色方案

设计师必存的101种配色方案 (qq.com)

●    Pinterest

●    dribbble

●    站酷

<think>好的,我现在需要处理用户关于大数据与商业智能(BI)技术和应用的查询。首先,我得理清大数据和BI的基本概念以及它们之间的关系。根据用户提供的引用,特别是引用[1],用户提到很多人对这两者的区别和联系缺乏完整的认知,所以我需要先明确两者的定义和区别。 大数据通常指的是处理海量、高速、多样化的数据的技术,包括数据收集、存储、处理和分析。而BI则更侧重于利用数据分析和可视化工具帮助企业做出决策。引用[4]提到BI的数据仓库功能,说明BI在数据整合和指标管理上的作用。接下来,我需要结合引用中的内容,分析它们的技术和应用场景。 用户还提到了工具,比如引用[2]中的FineBI,这是一个自助式BI工具,强调易用性和数据处理步骤的简化。同时,引用[5]指出大数据技术在数据收集、清洗、分析和可视化中的应用,比如MapReduce算法。我需要将大数据技术与BI工具结合起来,说明它们如何互补。 在结构方面,需要分点回答,包括核心技术、应用场景、常用工具以及两者的融合。要注意使用正确的中文表达和LaTeX格式,比如在提到算法时使用$$...$$,例如MapReduce的原理可能需要公式展示。同时,生成相关的问题,如区别、工具选择、实施挑战等,需参考示例中的问题结构。 需要确保引用的正确应用,例如在提到数据仓库时引用[4],提到FineBI时引用[2]。同时,检查是否有遗漏的关键点,比如大数据处理框架Hadoop、Spark是否要提及,以及BI的实时分析功能。 最后,验证是否符合用户要求:结构清晰、引用恰当、LaTeX正确、相关问题相关。可能需要多次调整以确保流畅和准确。</think>### 大数据与商业智能(BI)的技术与应用解析 #### 一、核心技术对比与融合 1. **大数据技术** 核心包括分布式存储(如HDFS)、并行计算框架(如MapReduce、Spark)和实时流处理(如Flink)。例如,MapReduce的算法可表示为: $$ \text{Map}(k1, v1) \rightarrow \text{list}(k2, v2), \quad \text{Reduce}(k2, \text{list}(v2)) \rightarrow \text{list}(v3) $$ 这种分治策略适用于海量数据的分批处理[^5]。 2. **商业智能(BI)技术** 依赖数据仓库(如引用[4]所述)和ETL工具(如Informatica),结合OLAP(联机分析处理)实现多维数据分析。例如,BI工具通过指标化建模将原始数据转换为业务指标,支持可视化探索式分析[^4]。 3. **融合方向** 大数据为BI提供底层数据支撑,BI则赋予大数据业务洞察力。例如,使用Spark处理TB级日志数据后,通过FineBI生成实时销售仪表盘[^2][^5]。 #### 二、典型应用场景 1. **大数据应用场景** - **数据收集与清洗**:从物联网设备或日志中采集数据,使用Hadoop去重(如引用[5]中的示例)。 - **预测分析**:基于Spark MLlib构建用户流失预测模型,公式可表示为: $$ P(\text{流失} | X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \cdots + \beta_n x_n)}} $$ 2. **BI应用场景** - **实时监控**:通过FineBI搭建销售看板,动态展示区域销售额与KPI对比[^2]。 - **根因分析**:利用OLAP下钻功能,定位库存异常波动的原因。 #### 三、主流工具与技术栈 | 类型 | 工具示例 | 核心功能 | |------------|------------------|------------------------------| | 大数据处理 | Hadoop, Spark | 分布式计算、流处理 | | BI平台 | FineBI, Tableau | 数据可视化、自助分析 | | 数据仓库 | Snowflake, Hive | 结构化存储、SQL查询优化 | #### 四、实施挑战与优化策略 - **数据整合**:需通过ETL工具将多源数据(如CRM、ERP)清洗后加载到数据仓库。 - **性能瓶颈**:对亿级数据表,可采用列式存储(如Parquet)加速查询。 - **业务赋能**:培训业务人员使用FineBI的“拖拉拽”功能自主生成报表,减少IT依赖[^3]。 --- §§ 相关问题 §§ 1. 大数据技术与传统数据仓库在架构设计上有何区别? 2. 如何选择适合企业的BI工具(如FineBI vs Power BI)? 3. 实时BI分析需要哪些技术支持? 4. 数据湖与数据仓库在BI应用中的协同方式是什么? 5. 中小型企业实施大数据+BI的典型路径是怎样的? [^1]: 引用1 : 引用2 : 引用4 : 引用5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值