Ribbon是什么?
- Spring Cloud Ribbon 是基于Netflix Ribbon 实现的一套客户端负载均衡的工具。
- 简单的说,Ribbon 是 Netflix 发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将 Netflix 的中间层服务连接在一起。Ribbon 的客户端组件提供一系列完整的配置项,如:连接超时、重试等。简单的说,就是在配置文件中列出 LoadBalancer (简称LB:负载均衡) 后面所有的及其,Ribbon 会自动的帮助你基于某种规则 (如简单轮询,随机连接等等) 去连接这些机器。我们也容易使用 Ribbon 实现自定义的负载均衡算法!
Ribbon能干嘛?
- LB,即负载均衡 (LoadBalancer) ,在微服务或分布式集群中经常用的一种应用。
- 负载均衡简单的说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA (高用)。
- 常见的负载均衡软件有 Nginx、Lvs 等等。
- Dubbo、SpringCloud 中均给我们提供了负载均衡,SpringCloud 的负载均衡算法可以自定义。
负载均衡简单分类:
- 集中式LB
即在服务的提供方和消费方之间使用独立的LB设施,如Nginx(反向代理服务器),由该设施负责把访问请求通过某种策略转发至服务的提供方!
- 进程式 LB
将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选出一个合适的服务器。
Ribbon 就属于进程内LB,它只是一个类库,集成于消费方进程,消费方通过它来获取到服务提供方的地址!
集成Ribbon
1.在springcloud-consumer-dept-8080(消费者)pom.xml文件中添加如下依赖(Ribbon、Eureka)
<!--Ribbon-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-ribbon</artifactId>
<version>1.4.6.RELEASE</version>
</dependency>
<!--Eureka: Ribbon需要从Eureka服务中心获取要拿什么-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
<version>1.4.6.RELEASE</version>
</dependency>
2.在application.yml中添加Eureka的配置
#Eureka 配置
eureka:
client:
register-with-eureka: false # 不向 Eureka注册自己
service-url: # 从三个注册中心中随机取一个去访问
defaultZone: http://eureka7001.com:7001/eureka/,http://eureka7002.com:7002/eureka/,http://eureka7003.com:7003/eureka/
3.在DeptConsumerController中,将地址的固定部分修改为服务端的服务名,实现通过服务名来访问
//Ribbon:我们这里的地址,应该是一个变量,通过服务名来访问
//private static final String REST_URL_PREFIX = "http://localhost:8001";
private static final String REST_URL_PREFIX = "http://SPRINGCLOUD-PROVIDER-DEPT";
4.主启动类加上@EnableEurekaClient注解,开启Eureka(客户端)
//Ribbon 和 Eureka 整合以后,客户端可以直接调用,不用关心IP地址和端口号
@SpringBootApplication
@EnableEurekaClient //开启Eureka 客户端
public class DeptConsumer_80 {
public static void main(String[] args) {
SpringApplication.run(DeptConsumer_80.class, args);
}
}
5.在ConfigBean中开启负载均衡,使RestTemplate实现负载均衡
@Configuration
public class ConfigBean {
//@Configuration -- spring applicationContext.xml
@LoadBalanced //配置负载均衡实现RestTemplate
@Bean
public RestTemplate getRestTemplate() {
return new RestTemplate();
}
}
6.体验负载均衡(Ribbon 默认采用轮训方式)
1.新建两个数据库db02、db03,,将db01中的数据同步复制到db02 和 db03中。
2.新建两个服务提供者Moudle:springcloud-provider-dept-8002、springcloud-provider-dept-8003
3.将springcloud-provider-dept-8001 的pom.xml 、mybatis、application.yml 同步复制到8002和8003项目下,修改端口号,数据库名、eureka的实例名。
4.电脑8G推荐:启动项目 7001(eureka注册中心)、8001(服务提供者)、8002(服务提供者)、8003(服务提供者)、80(服务消费者)。
电脑16G推荐:启动项目 7001(eureka注册中心)、7002(eureka注册中心)、7003(eureka注册中心)、8001(服务提供者)、8002(服务提供者)、8003(服务提供者)、80(服务消费者)。
5.访问链接: http://localhost/consumer/dept/list
观察数据来源数据库,再次访问,发现顺序为 db01、 db02、db03;
该种方式为轮询,是Ribbon默认的一种实现负载均衡的一种方式。
7.自定义负载均衡策略
1.根据以下官方文档的描述,我们将自定义的规则,放在一个新的包中,并在主启动类上进行注释
项目目录:
2.在主启动类上进行配置服务名和配置类
@SpringBootApplication(exclude = DataSourceAutoConfiguration.class)
@EnableEurekaClient
@RibbonClient(name = "SPRINGCLOUD-PROVIDER-DEPT",configuration = DivinerRule.class)
public class DeptConsumer_80 {
public static void main(String[] args) {
SpringApplication.run(DeptConsumer_80.class,args);
}
}
3.自定义负载均衡规则
package com.diviner.myrule;
import com.netflix.client.config.IClientConfig;
import com.netflix.loadbalancer.AbstractLoadBalancerRule;
import com.netflix.loadbalancer.ILoadBalancer;
import com.netflix.loadbalancer.Server;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
public class DivinerRandomRule extends AbstractLoadBalancerRule {
//每个服务访问五次换下一个服务
//total 默认等于0,当等于五的时候,走到下一个结点
//index 默认等于0,当index等于5的时候,index + 1
private int total = 0; //被调用次数
private int currentIndex = 0; //当前被调用的服务
@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
} else {
Server server = null;
while(server == null) {
if (Thread.interrupted()) {
return null;
}
List<Server> upList = lb.getReachableServers(); //获得活着的服务
List<Server> allList = lb.getAllServers(); //获取全部服务
int serverCount = allList.size();
if (serverCount == 0) {
return null;
}
// int index = this.chooseRandomInt(serverCount); //随机数算法获取随机数
// server = upList.get(index);
if(total < 5)
{
server = upList.get(currentIndex);
total ++;
}else
{
total = 0;
currentIndex ++;
if(currentIndex >= upList.size()) currentIndex = 0;
server = upList.get(currentIndex);
}
if (server == null) {
Thread.yield();
} else {
if (server.isAlive()) {
return server;
}
server = null;
Thread.yield();
}
}
return server;
}
}
protected int chooseRandomInt(int serverCount) {
return ThreadLocalRandom.current().nextInt(serverCount);
}
public Server choose(Object key) {
return this.choose(this.getLoadBalancer(), key);
}
public void initWithNiwsConfig(IClientConfig clientConfig) {
}
}
4.在配置类中new一下自定义的规则并返回
package com.diviner.myrule;
import com.netflix.loadbalancer.IRule;
import com.netflix.loadbalancer.RandomRule;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DivinerRule {
@Bean
public IRule myrule()
{
return new DivinerRandomRule();
}
}