创建虚拟环境,防止破坏原环境
创建新的虚拟环境
conda create -n yourEnv python=3.11.9
#(推荐3.10或者3.11,因为Hugging-face上triton目前只适配到这个版本)
激活虚拟环境并进入
conda activate deepspeed #我的新虚拟环境命名为deepspeed
检查Pytorch是否安装,一定要安装相适配的GPU版本
检查torch版本,判断是否为GPU版本
import torch
print(torch.__version__)
print(torch.cuda.is_available())#GPU版本会返回True,否则返回False
若为GPU版本则需要卸载Pytorch并重新安装
GPU版本Pytorch安装
CUDA和cuDNN检查和安装
先查看设备上CUDA版本
打开命令行,并输入nvidia-smi查看设备
查看驱动版本和CUDA版本是否相匹配
官网文档:CUDA 12.6 Update 1 Release Notes (nvidia.com)
如果不匹配则需要更新驱动
参考文章:超实用总结!!显卡驱动无法支持cuda版本问题(终于捋清楚显卡驱动、cuda、pytorch的对应关系了)_cuda11.8支持11.7显卡吗-CSDN博客
如果设备没有安装CUDA,可以前往官网下载
注册账号后即可登录下载
下载完成后双击运行
这里是设置安装时缓存存放的位置,直接默认路径就行
选择自定义安装
全选所有组件
选择安装位置,一定要记住这个安装路径,之后要用到!
等待安装完毕,检查CUDA是否安装成功
打开命令行,输入nvcc -V查看