Anaconda:Windows下Accelerate+DeepSpeed安装(超详细版本)

创建虚拟环境,防止破坏原环境

创建新的虚拟环境

conda create -n yourEnv python=3.11.9  
#(推荐3.10或者3.11,因为Hugging-face上triton目前只适配到这个版本)

激活虚拟环境并进入

conda activate deepspeed #我的新虚拟环境命名为deepspeed

检查Pytorch是否安装,一定要安装相适配的GPU版本

检查torch版本,判断是否为GPU版本

import torch
print(torch.__version__)
print(torch.cuda.is_available())#GPU版本会返回True,否则返回False

若为GPU版本则需要卸载Pytorch并重新安装

GPU版本Pytorch安装

CUDA和cuDNN检查和安装

先查看设备上CUDA版本

打开命令行,并输入nvidia-smi查看设备

查看驱动版本和CUDA版本是否相匹配

官网文档:CUDA 12.6 Update 1 Release Notes (nvidia.com)

如果不匹配则需要更新驱动

参考文章:超实用总结!!显卡驱动无法支持cuda版本问题(终于捋清楚显卡驱动、cuda、pytorch的对应关系了)_cuda11.8支持11.7显卡吗-CSDN博客

如果设备没有安装CUDA,可以前往官网下载

注册账号后即可登录下载

下载完成后双击运行

这里是设置安装时缓存存放的位置,直接默认路径就行

选择自定义安装

全选所有组件

选择安装位置,一定要记住这个安装路径,之后要用到!

等待安装完毕,检查CUDA是否安装成功

打开命令行,输入nvcc -V查看

### 解决Windows系统上安装DeepSpeed失败的方法 对于在Windows系统上安装DeepSpeed过程中遇到的各种错误,可以采取一系列措施来解决问题。具体方法如下: #### 修改`setup.py` 当遭遇特定文件未找到的错误时,可能是因为路径配置不正确或某些依赖项缺失。通过调整`setup.py`中的代码能够有效缓解这一状况[^1]。 ```python import os from setuptools import setup, find_packages # 增加对环境变量的支持以适应不同操作系统下的差异 os.environ['PATH'] += os.pathsep + r'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X\bin' ``` 此段脚本增加了CUDA工具包至系统的环境变量中,确保编译过程能找到必要的库文件。 #### 处理模块不存在的问题 如果提示缺少名为`dskernels`这样的自定义或第三方模块,则表明项目结构中有误或是网络原因未能成功下载所需资源。此时应确认本地克隆仓库命令无误,并保证互联网连接正常以便获取最新源码[^3]。 ```bash git clone https://github.com/microsoft/DeepSpeed.git cd DeepSpeed pip install . ``` 上述指令序列用于拉取官方GitHub存储库里的DeepSpeed资料并执行安装操作。 #### 使用Conda创建独立运行环境 考虑到兼容性和稳定性因素,在Anaconda环境下构建专门针对DeepSpeed应用的新虚拟空间不失为明智之举。这有助于隔离其他Python程序间的潜在冲突,从而简化调试流程[^4]。 ```bash conda create -n deepspeed python=3.8 conda activate deepspeed pip install accelerate deepspeed ``` 这些命令负责建立名称为`deepspeed`的新环境以及激活它之后加载所需的软件包集合。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搞定ML

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值