本地部署deepseek,不使用ollama,使用引擎vLLM和SGLang启动

今天突然得到消息,DeepSeek大模型安装部署所需的O1lama框架存在远程代码执行漏洞!一觉醒来天塌了

那么如何不使用ollama纯手工部署deepseek呢?

1.首先访问deepseek官网

DeepSeek | 深度求索

2.根据自己的需求下载对应的大模型

如何选择自己需要的呢?

DeepSeek-V3

通用型模型:专注于自然语言处理、知识问答、内容创作等通用任务,目标是实现高性能与低成本的平衡,适用于智能客服、个性化推荐系统等场景。

训练重点:通过算法优化降低训练成本,采用多令牌预测(MTP)和无辅助损失负载均衡策略提升效率,支持128K上下文窗口。

DeepSeek-R1

推理专用模型:专为数学、代码生成和复杂逻辑推理任务设计,通过大规模强化学习(RL)提升推理能力,对标OpenAI o1系列。

创新训练方法:完全摒弃监督微调(SFT),采用纯强化学习(如GRPO算法)训练基座模型,并通过冷启动数据优化可读性。

跳转地址

GitHub - deepseek-ai/DeepSeek-R1

国内访问github会比较卡

可以加kk

GitHub - deepseek-ai/DeepSeek-R1

3.下载大模压缩包

这个链接下载的只是一个说明文档,

解压-可以使用VS CODE打开

根据自己的显卡性能下载

直接访问huggingface会比较卡,可以选择晚上进行下载,

或者使用huggingface的镜像

或者使用易树科技官网

DeepSeek R1 Distill 本地部署相关资料

或者前往魔塔

组织详情 · 魔搭社区

大模型下载好之后,

4.搭建引擎

仔细访问deepseek的文档,

文中说明可以使用vLLMSGLang引擎启动服务

那么这两个引擎应该使用那个呢,当然是根据自己的大模型类型来选择

vLLM:

广泛应用于自然语言处理领域的文本生成、机器翻译、情感分析、问答系统等。

在对话系统中,vLLM可以用于构建智能客服、聊天机器人等应用,提供流畅的对话体验。

SGLang:

主要集中在处理结构化数据上,如社交网络分析、推荐系统等。

通过高效的图数据推理能力,SGLang能够为用户提供精准的推荐结果和深入的数据分析。

R版本适合SGlang

因此

5.下载SGlang引擎

通过访问

GitHub - sgl-project/sglang: SGLang is a fast serving framework for large language models and vision language models.

如果无法访问就在github前加kk

来进行下载

下载完成后解压,使用VSCODE打开,先访问README.md

6.使用SGlang引擎

正在研究,未完待续!


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

602寝室长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值