找到字符串中的所有分母异位词438

题目

给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。

示例一:
在这里插入图片描述
什么情况下会想到滑动窗口法

    任何题目如果没有思路其实都可以想一下*暴力解法*。这道题暴力解法思路简单:
  • 遍历任意i,j,使得i和j之间的子串长度,等于p串的长度。该子串称之为x。该步复杂度为O(n)。

  • 判断x是否与p是异位词。是的话,则把i加入答案中。该步复杂度为O(n)。暴力法的复杂度为O(n^2)。显然不高效。

    可以发现第二步其实做了很多不必要的操作,例如[i, j]和[i+1, j+1]两个子串在暴力法第二步中,需要各遍历一次,完全没必要。**其实[i+1, j+1]完全可以在[i, j]的基础上做判断,也就是去掉头部的字符(i位置),加上尾部的字符(j+1位置)**。这样第一步的复杂度可以降到O(1)。整体复杂度降到O(n)。已经得到信息不重复使用就浪费了,没必要重新搜集近乎相同的信息。这就是滑动窗口法。
    

滑动窗口法的特点是,一连串元素的信息,可以用常数时间推断出,该串整体移位后,新串信息。
所有滑动窗口问题,如果能从暴力法优化的角度思考,都不难想到。

思路一:滑动窗口 + 数组

每次增加一个新字母,去除一个旧字母

代码

class Solution {
    public List<Integer> findAnagrams(String s, String p) {
        int m = s.length();
        int n = p.length();
        List<Integer> res = new ArrayList<>();

        int[] sArray = new int[26];
        int[] pArray = new int[26];

        if(m < n){
            return res;
        }
        for(int i=0;i<n;i++){
            sArray[s.charAt(i) - 'a']++;
            pArray[p.charAt(i) - 'a']++;
        }
        if(Arrays.equals(sArray,pArray)){
            res.add(0);
        }

        for(int i=n;i<m;i++){
            sArray[s.charAt(i - n) - 'a']--; // 去除s子串中第一个字母
            sArray[s.charAt(i) - 'a']++; //增加一个新字母

            if(Arrays.equals(sArray,pArray)){
                res.add(i-n+1);
            }
        }

        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值