63. 不同路径 II

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。

示例:
在这里插入图片描述

代码

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        // 初始化
        // 若obstacleGrid[i][0] == 1,后面的都不会被赋值成1了,都是默认值0
        for(int i = 0; i < n && obstacleGrid[0][i] ==0; i++){
            dp[0][i] = 1;
        }
        for(int j = 0; j < m && obstacleGrid[j][0] == 0; j++){
            dp[j][0] = 1;
        }

      
        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                if(obstacleGrid[i][j] == 1){
                    dp[i][j] = 0;
                }else{
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];   
                }
            }
        }

        return dp[m-1][n-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值