AcWing寒假每日一题——Day25数独检查

703数独检查

一、问题描述

数独是一种流行的单人游戏。目标是用数字填充9x9矩阵,使每列,每行和所有9个非重叠的3x3子矩阵包含从1到9的所有数字。每个9x9矩阵在游戏开始时都会有部分数字已经给出,通常有一个独特的解决方案。
在这里插入图片描述
在这里插入图片描述
给定完成的 N 2 ∗ N 2 N^2∗N^2 N2N2数独矩阵,你的任务是确定它是否是有效的解决方案。有效的解决方案必须满足以下条件:
每行包含从1到 N 2 N^2 N2的每个数字,每个数字一次。
每列包含从1到 N 2 N^2 N2的每个数字,每个数字一次。
N 2 ∗ N 2 N^2∗N^2 N2N2矩阵划分为 N 2 N^2 N2个非重叠 N ∗ N N∗N NN子矩阵。 每个子矩阵包含从1到 N 2 N^2 N2的每个数字,每个数字一次。你无需担心问题的唯一性,只需检查给定矩阵是否是有效的解决方案即可。
输入格式
第一行包含整数T,表示共有T组测试数据。每组数据第一行包含整数N。接下来 N 2 N^2 N2行,每行包含 N 2 N^2 N2个数字(均不超过1000),用来描述完整的数独矩阵。
输出格式
每组数据输出一个结果,每个结果占一行。结果表示为“Case #x: y”,其中x是组别编号(从1开始),如果给定矩阵是有效方案则y是Yes,否则y是No。
数据范围
1≤ T T T≤100,
3≤ N N N≤6
输入样例:

3
3
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9
3
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
3
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 999 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

输出样例

Case #1: Yes
Case #2: No
Case #3: No

二、问题分析

只需将题目中的条件模拟出来即可
代码如下(示例):

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int t,x,cnt=1;
int q[40][40];
bool p[40];
bool row()
{
    for(int i=1;i<=x*x;i++)
    {
        memset(p,0,sizeof p);
        for(int j=1;j<=x*x;j++)
        {
            if(q[i][j]>x*x||q[i][j]<1)return false;
            if(p[q[i][j]])return false;
            p[q[i][j]]=true;
        }
    }
    return true;
}
bool rol()
{
    for(int i=1;i<=x*x;i++)
    {
        memset(p,0,sizeof p);
        for(int j=1;j<=x*x;j++)
        {
            if(q[j][i]>x*x||q[j][i]<1)return false;
            if(p[q[j][i]])return false;
            p[q[j][i]]=true;
        }
    }
    return true;
}
bool cell()
{
    for(int i=1;i<=x*x;i+=x)
    {
        for(int j=1;j<=x*x;j+=x)
        {
             memset(p,0,sizeof p);
            for(int dx=0;dx<x;dx++)
                for(int dy=0;dy<x;dy++)
                {
                    if(q[i+dx][j+dy]>x*x||q[i+dx][j+dy]<1)return false;
                    if(p[q[i+dx][j+dy]])return false;
                    p[q[i+dx][j+dy]]=true;
                }
        }
    }
    return true;
}
int main()
{
    cin>>t;
    while(t--)
    {
        cin>>x;
        for(int i=1;i<=x*x;i++)
            for(int j=1;j<=x*x;j++)
                cin>>q[i][j];
        if(row()&&rol()&&cell())
        printf("Case #%d: Yes\n",cnt++);
        else printf("Case #%d: No\n",cnt++);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值