微分、导数和积分公式对照表
序号 | 微分公式 | 导数公式 | 积分公式 |
---|---|---|---|
| | 幂函数 | ||
1 | d(xμ)=μxμ−1 dx\mathbf{d}(x^\mu)=\mu x^{\mu-1}\ \mathbf{d}xd(xμ)=μxμ−1 dx | (xμ)′=μxμ−1(x^\mu)'=\mu x^{\mu-1}(xμ)′=μxμ−1 | ∫xμdx=xμ+1μ+1+C\int x^\mu \mathbf{d}x=\cfrac{x^{\mu+1}}{\mu+1}+C∫xμdx=μ+1xμ+1+C |
| | 指数函数 | ||
2 | d(ax)=axlna dx\mathbf{d}(a^x)=a^x \ln a\ \mathbf{d}xd(ax)=axlna dx | (ax)′=axlna(a^x)'=a^x \ln a(ax)′=axlna | ∫axdx=axlna+C\int a^x\mathbf{d}x=\cfrac{a^x}{\ln a}+C∫axdx=lnaax+C |
3 | d(ex)=ex dx\mathbf{d}(e^x)=e^x\ \mathbf{d}xd(ex)=ex dx | (ex)′=ex(e^x)'=e^x(ex)′=ex | ∫exdx=ex+C\int e^x \mathbf{d}x=e^x+C∫exdx=ex+C |
| | 对数函数 | ||
4 | d(logax)=1xlnadx\mathbf{d}(\log_ax)=\cfrac{1}{x\ln a}\mathbf{d}xd(logax)=xlna1dx | (logax)′=1xlna(\log_ax)'=\cfrac{1}{x\ln a}(logax)′=xlna1 | |
5 | d(lnx)=1xdx\mathbf{d}(\ln x)=\cfrac{1}{x}\mathbf{d}xd(lnx)=x1dx | (lnx)′=1x(\ln x)'=\cfrac{1}{x}(lnx)′=x1 | ∫1xdx=ln∣x∣+C\int \cfrac{1}{x} \mathbf{d}x=\ln \vert x \vert+C∫x1dx=ln∣x∣+C |
| | 三角函数 | ||
6 | d(sinx)=cosx dx\mathbf{d}(\sin x)=\cos x\ \mathbf{d}xd(sinx)=cosx dx | (sinx)′=cosx(\sin x)'=\cos x(sinx)′=cosx | ∫cosxdx=sinx+C\int \cos x\mathbf{d}x=\sin x+C∫cosxdx=sinx+C |
7 | d(cosx)=−sinx dx\mathbf{d}(\cos x)=-\sin x\ \mathbf{d}xd(cosx)=−sinx dx | (cosx)′=−sinx(\cos x)'=-\sin x(cosx)′=−sinx | ∫sinxdx=−cosx+C\int \sin x \mathbf{d}x=-\cos x+C∫sinxdx=−cosx+C |
8 | d(tanx)=sec2x dx\mathbf{d}(\tan x)=\sec^2x\ \mathbf{d}xd(tanx)=sec2x dx | (tanx)′=sec2x(\tan x)'=\sec^2x(tanx)′=sec2x | ∫sec2xdx=∫1cos2x=tanx+C\int \sec^2x\mathbf{d}x=\int \cfrac{1}{\cos^2x}=\tan x+C∫sec2xdx=∫cos2x1=tanx+C |
| | |||
9 | d(cotx)=−csc2x dx\mathbf{d}(\cot x)=-\csc^2x\ \mathbf{d}xd(cotx)=−csc2x dx | (cotx)′=−csc2x(\cot x)'=-\csc^2x(cotx)′=−csc2x | ∫csc2xdx=∫1sin2x=−cotx+C\int \csc^2x\mathbf{d}x=\int \cfrac{1}{\sin^2x}=-\cot x+C∫csc2xdx=∫sin2x1=−cotx+C |
10 | d(secx)=secx tanx dx\mathbf{d}(\sec x)=\sec x\ \tan x\ \mathbf{d}xd(secx)=secx tanx dx | (secx)′=secxtanx(\sec x)'=\sec x\tan x(secx)′=secxtanx | ∫secxtanxdx=secx+C\int \sec x \tan x\mathbf{d}x=\sec x+C∫secxtanxdx=secx+C |
11 | d(cscx)=−cscxcotx dx\mathbf{d}(\csc x)=-\csc x\cot x\ \mathbf{d}xd(cscx)=−cscxcotx dx | (cscx)′=−cscxcotx(\csc x)'=-\csc x\cot x(cscx)′=−cscxcotx | ∫cscxcotxdx=−cscx+C\int \csc x \cot x \mathbf{d}x=-\csc x+C∫cscxcotxdx=−cscx+C |
| | 反三角函数 | ||
12 | d(arcsinx)=11−x2dx\mathbf{d}(\arcsin x)=\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}xd(arcsinx)=1−x21dx | (arcsinx)′=11−x2(\arcsin x)'=\cfrac{1}{\sqrt{1-x^2}}(arcsinx)′=1−x21 | ∫11−x2=arcsinx+C\int \cfrac{1}{\sqrt{1-x^2}}=\arcsin x+C∫1−x21=arcsinx+C |
13 | d(arccosx)=−11−x2dx\mathbf{d}(\arccos x)=-\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}xd(arccosx)=−1−x21dx | (arccosx)′=−11−x2(\arccos x)'=-\cfrac{1}{\sqrt{1-x^2}}(arccosx)′=−1−x21 | |
14 | d(arctanx)=11+x2dx\mathbf{d}(\arctan x)=\cfrac{1}{1+x^2}\mathbf{d}xd(arctanx)=1+x21dx | (arctanx)′=11+x2(\arctan x)'=\cfrac{1}{1+x^2}(arctanx)′=1+x21 | ∫11+x2=arctanx+C\int \cfrac{1}{1+x^2}=\arctan x+C∫1+x21=arctanx+C |
15 | d(arccot x)=−11+x2dx\mathbf{d}(arccot\ x)=-\cfrac{1}{1+x^2}\mathbf{d}xd(arccot x)=−1+x21dx | (arccotx)′=−11+x2(arccot x)'=-\cfrac{1}{1+x^2}(arccotx)′=−1+x21 |
积分续表
∫kdx=kx+C,(k、C是常数)\int k \mathbf{d}x=kx+C,(k、C是常数)∫kdx=kx+C,(k、C是常数)
∫tanxdx=−ln∣cosx∣+C\int \tan x\mathbf{d}x=-\ln |\cos x|+C∫tanxdx=−ln∣cosx∣+C
∫cotxdx=ln∣sinx∣+C\int \cot x\mathbf{d}x=\ln |\sin x|+C∫cotxdx=ln∣sinx∣+C
∫secxdx=ln∣secx+tanx∣+C\int \sec x\mathbf{d}x=\ln|\sec x+\tan x|+C∫secxdx=ln∣secx+tanx∣+C
∫cscxdx=ln∣cscx−cotx∣+C\int \csc x\mathbf{d}x=\ln|\csc x-\cot x|+C∫cscxdx=ln∣cscx−cotx∣+C
∫1a2+x2dx=1aarctanxa+C\int \cfrac{1}{a^2+x^2}\mathbf{d}x=\cfrac{1}{a}\arctan \cfrac{x}{a}+C∫a2+x21dx=a1arctanax+C
∫1x2−a2dx=12aln∣x−ax+a∣+C\int \cfrac{1}{x^2-a^2}\mathbf{d}x=\cfrac{1}{2a}\ln \vert \dfrac{x-a}{x+a} \vert + C∫x2−a21dx=2a1ln∣x+ax−a∣+C
∫1a2−x2dx=arcsinxa+C\int \cfrac{1}{\sqrt{a^2-x^2}}\mathbf{d}x=\arcsin \cfrac{x}{a}+C∫a2−x21dx=arcsinax+C
∫1x2+a2dx=ln∣x+x2+a2∣+C\int \cfrac{1}{\sqrt{x^2+a^2}}\mathbf{d}x=\ln |x+\sqrt{x^2+a^2}|+C∫x2+a21dx=ln∣x+x2+a2∣+C
∫1x2−a2dx=ln∣x+x2−a2∣+C\int \cfrac{1}{\sqrt{x^2-a^2}}\mathbf{d}x=\ln|x+\sqrt{x^2-a^2}|+C∫x2−a21dx=ln∣x+x2−a2∣+C