微积分常用公式表

微分、导数和积分公式对照表

序号微分公式导数公式积分公式
|幂函数
1d(xμ)=μxμ−1 dx\mathbf{d}(x^\mu)=\mu x^{\mu-1}\ \mathbf{d}xd(xμ)=μxμ1 dx(xμ)′=μxμ−1(x^\mu)'=\mu x^{\mu-1}(xμ)=μxμ1∫xμdx=xμ+1μ+1+C\int x^\mu \mathbf{d}x=\cfrac{x^{\mu+1}}{\mu+1}+Cxμdx=μ+1xμ+1+C
|指数函数
2d(ax)=axln⁡a dx\mathbf{d}(a^x)=a^x \ln a\ \mathbf{d}xd(ax)=axlna dx(ax)′=axln⁡a(a^x)'=a^x \ln a(ax)=axlna∫axdx=axln⁡a+C\int a^x\mathbf{d}x=\cfrac{a^x}{\ln a}+Caxdx=lnaax+C
3d(ex)=ex dx\mathbf{d}(e^x)=e^x\ \mathbf{d}xd(ex)=ex dx(ex)′=ex(e^x)'=e^x(ex)=ex∫exdx=ex+C\int e^x \mathbf{d}x=e^x+Cexdx=ex+C
|对数函数
4d(log⁡ax)=1xln⁡adx\mathbf{d}(\log_ax)=\cfrac{1}{x\ln a}\mathbf{d}xd(logax)=xlna1dx(log⁡ax)′=1xln⁡a(\log_ax)'=\cfrac{1}{x\ln a}(logax)=xlna1
5d(ln⁡x)=1xdx\mathbf{d}(\ln x)=\cfrac{1}{x}\mathbf{d}xd(lnx)=x1dx(ln⁡x)′=1x(\ln x)'=\cfrac{1}{x}(lnx)=x1∫1xdx=ln⁡∣x∣+C\int \cfrac{1}{x} \mathbf{d}x=\ln \vert x \vert+Cx1dx=lnx+C
|三角函数
6d(sin⁡x)=cos⁡x dx\mathbf{d}(\sin x)=\cos x\ \mathbf{d}xd(sinx)=cosx dx(sin⁡x)′=cos⁡x(\sin x)'=\cos x(sinx)=cosx∫cos⁡xdx=sin⁡x+C\int \cos x\mathbf{d}x=\sin x+Ccosxdx=sinx+C
7d(cos⁡x)=−sin⁡x dx\mathbf{d}(\cos x)=-\sin x\ \mathbf{d}xd(cosx)=sinx dx(cos⁡x)′=−sin⁡x(\cos x)'=-\sin x(cosx)=sinx∫sin⁡xdx=−cos⁡x+C\int \sin x \mathbf{d}x=-\cos x+Csinxdx=cosx+C
8d(tan⁡x)=sec⁡2x dx\mathbf{d}(\tan x)=\sec^2x\ \mathbf{d}xd(tanx)=sec2x dx(tan⁡x)′=sec⁡2x(\tan x)'=\sec^2x(tanx)=sec2x∫sec⁡2xdx=∫1cos⁡2x=tan⁡x+C\int \sec^2x\mathbf{d}x=\int \cfrac{1}{\cos^2x}=\tan x+Csec2xdx=cos2x1=tanx+C
|
9d(cot⁡x)=−csc⁡2x dx\mathbf{d}(\cot x)=-\csc^2x\ \mathbf{d}xd(cotx)=csc2x dx(cot⁡x)′=−csc⁡2x(\cot x)'=-\csc^2x(cotx)=csc2x∫csc⁡2xdx=∫1sin⁡2x=−cot⁡x+C\int \csc^2x\mathbf{d}x=\int \cfrac{1}{\sin^2x}=-\cot x+Ccsc2xdx=sin2x1=cotx+C
10d(sec⁡x)=sec⁡x tan⁡x dx\mathbf{d}(\sec x)=\sec x\ \tan x\ \mathbf{d}xd(secx)=secx tanx dx(sec⁡x)′=sec⁡xtan⁡x(\sec x)'=\sec x\tan x(secx)=secxtanx∫sec⁡xtan⁡xdx=sec⁡x+C\int \sec x \tan x\mathbf{d}x=\sec x+Csecxtanxdx=secx+C
11d(csc⁡x)=−csc⁡xcot⁡x dx\mathbf{d}(\csc x)=-\csc x\cot x\ \mathbf{d}xd(cscx)=cscxcotx dx(csc⁡x)′=−csc⁡xcot⁡x(\csc x)'=-\csc x\cot x(cscx)=cscxcotx∫csc⁡xcot⁡xdx=−csc⁡x+C\int \csc x \cot x \mathbf{d}x=-\csc x+Ccscxcotxdx=cscx+C
|反三角函数
12d(arcsin⁡x)=11−x2dx\mathbf{d}(\arcsin x)=\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}xd(arcsinx)=1x21dx(arcsin⁡x)′=11−x2(\arcsin x)'=\cfrac{1}{\sqrt{1-x^2}}(arcsinx)=1x21∫11−x2=arcsin⁡x+C\int \cfrac{1}{\sqrt{1-x^2}}=\arcsin x+C1x21=arcsinx+C
13d(arccos⁡x)=−11−x2dx\mathbf{d}(\arccos x)=-\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}xd(arccosx)=1x21dx(arccos⁡x)′=−11−x2(\arccos x)'=-\cfrac{1}{\sqrt{1-x^2}}(arccosx)=1x21
14d(arctan⁡x)=11+x2dx\mathbf{d}(\arctan x)=\cfrac{1}{1+x^2}\mathbf{d}xd(arctanx)=1+x21dx(arctan⁡x)′=11+x2(\arctan x)'=\cfrac{1}{1+x^2}(arctanx)=1+x21∫11+x2=arctan⁡x+C\int \cfrac{1}{1+x^2}=\arctan x+C1+x21=arctanx+C
15d(arccot x)=−11+x2dx\mathbf{d}(arccot\ x)=-\cfrac{1}{1+x^2}\mathbf{d}xd(arccot x)=1+x21dx(arccotx)′=−11+x2(arccot x)'=-\cfrac{1}{1+x^2}(arccotx)=1+x21

积分续表

∫kdx=kx+C,(k、C是常数)\int k \mathbf{d}x=kx+C,(k、C是常数)kdx=kx+C,kC

∫tan⁡xdx=−ln⁡∣cos⁡x∣+C\int \tan x\mathbf{d}x=-\ln |\cos x|+Ctanxdx=lncosx+C

∫cot⁡xdx=ln⁡∣sin⁡x∣+C\int \cot x\mathbf{d}x=\ln |\sin x|+Ccotxdx=lnsinx+C

∫sec⁡xdx=ln⁡∣sec⁡x+tan⁡x∣+C\int \sec x\mathbf{d}x=\ln|\sec x+\tan x|+Csecxdx=lnsecx+tanx+C

∫csc⁡xdx=ln⁡∣csc⁡x−cot⁡x∣+C\int \csc x\mathbf{d}x=\ln|\csc x-\cot x|+Ccscxdx=lncscxcotx+C

∫1a2+x2dx=1aarctan⁡xa+C\int \cfrac{1}{a^2+x^2}\mathbf{d}x=\cfrac{1}{a}\arctan \cfrac{x}{a}+Ca2+x21dx=a1arctanax+C

∫1x2−a2dx=12aln⁡∣x−ax+a∣+C\int \cfrac{1}{x^2-a^2}\mathbf{d}x=\cfrac{1}{2a}\ln \vert \dfrac{x-a}{x+a} \vert + Cx2a21dx=2a1lnx+axa+C

∫1a2−x2dx=arcsin⁡xa+C\int \cfrac{1}{\sqrt{a^2-x^2}}\mathbf{d}x=\arcsin \cfrac{x}{a}+Ca2x21dx=arcsinax+C

∫1x2+a2dx=ln⁡∣x+x2+a2∣+C\int \cfrac{1}{\sqrt{x^2+a^2}}\mathbf{d}x=\ln |x+\sqrt{x^2+a^2}|+Cx2+a21dx=lnx+x2+a2+C

∫1x2−a2dx=ln⁡∣x+x2−a2∣+C\int \cfrac{1}{\sqrt{x^2-a^2}}\mathbf{d}x=\ln|x+\sqrt{x^2-a^2}|+Cx2a21dx=lnx+x2a2+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值