机器学习之矩阵微积分及其性质

57 篇文章 3 订阅 ¥59.90 ¥99.00
57 篇文章 6 订阅 ¥39.90 ¥99.00
本文详细介绍了矩阵求导的符号约定和各种求导形式,包括向量-向量、标量-向量、向量-标量、标量-矩阵、矩阵-标量和矩阵-矩阵求导。通过理解这些概念,可以帮助机器学习爱好者更好地理解和推导机器学习模型的公式。
摘要由CSDN通过智能技术生成

目录

符号约定

标量、向量和矩阵求导符号约定

向量-向量求导

标量-向量求导

向量-标量求导

标量-矩阵求导

矩阵-标量求导

矩阵-矩阵求导

总结


        为啥写这篇文章呢?当你想成为一个机器学习爱好者,尝试读懂所有机器学习原理公式推导时,总是会遇到矩阵求导的那道坎,怎么也过不去。对此,本文详细介绍矩阵求导。我们先给出标量,向量,矩阵在本文中的一些符号约定,这些约定也是大部分书籍或者文章中普遍采用的。

符号约定

标量

        比如温度的数值,身高的数值,它们只需要一个数值就能表示,这就是标量,通常使用普通的小写字母表示它们,例如a,x,y等;

向量

        生活中有很多量是标量无法表示的,比如物理学中的力,它既有大小有有方向,需要两个量来表示,我们通常使用向量来表示它们,根据写法不同,分为行向量和列向量,通常向量使用加粗的小写字母来表示,比如

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>