频次: 1
出处: 2009-16、
知识树位置:
- 一元函数微分学
- 函数
- 幂函数
- 幂函数的性质
- 幂函数
- 函数
知识点内容:
定义
形如 f ( x ) = x n f(x) = x^n f(x)=xn 的函数,称为幂函数,其中 n n n 是常数.
性质
- 当
n
>
0
n>0
n>0 时:
- 函数图象都通过点 ( 0 , 0 ) , ( 1 , 1 ) (0,0),(1,1) (0,0),(1,1);
- 当 x ∈ ( 0 , + ∞ ) x\in(0,+\infin) x∈(0,+∞),函数单调递增.
- 当
n
<
0
n<0
n<0 时:
- 函数图象都过点 ( 1 , 1 ) (1,1) (1,1);
- 当 x ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) x\in(-\infin,0) \cup (0,+\infin) x∈(−∞,0)∪(0,+∞),函数单调递减.
题目集:
【2009-16】
设
a
n
a_n
an 为曲线
y
=
x
n
y=x^n
y=xn 与
y
=
x
n
+
1
(
n
=
1
,
2
,
.
.
.
)
y=x^{n+1}(n=1,2,...)
y=xn+1(n=1,2,...) 所围成区域的面积,记
S
1
=
∑
n
=
1
∞
a
n
,
S
2
=
∑
n
=
1
∞
a
2
n
−
1
S_1=\sum_{n=1}^{\infin}a_n,S_2=\sum_{n=1}^{\infin}a_{2n-1}
S1=n=1∑∞an,S2=n=1∑∞a2n−1
求
S
1
、
S
2
S_1、S_2
S1、S2 的值.
解:
∵
n
>
0
\because n>0
∵n>0
∴
y
=
x
n
与
y
=
x
n
+
1
的
交
点
为
(
0
,
0
)
和
(
1
,
1
)
\therefore y=x^n与y=x^{n+1}的交点为(0,0)和(1,1)
∴y=xn与y=xn+1的交点为(0,0)和(1,1)
∴
\therefore
∴
a
n
=
∫
0
1
(
x
n
−
x
n
+
1
)
d
x
=
(
1
n
+
1
x
n
+
1
−
1
n
+
2
x
n
+
2
)
∣
0
1
=
1
n
+
1
−
1
n
+
2
a_n=\int_0^1(x^n-x^{n+1})dx=(\dfrac{1}{n+1}x^{n+1}-\dfrac{1}{n+2}x^{n+2})|^1_0=\dfrac{1}{n+1}-\dfrac{1}{n+2}
an=∫01(xn−xn+1)dx=(n+11xn+1−n+21xn+2)∣01=n+11−n+21
余下在常数项级数一节求解。