知识点索引:幂函数性质

该博客探讨了幂函数的性质及其在微积分中的应用。通过解析函数交点,确定了由y=x^n与y=x^(n+1)围成的区域面积表达式an,并利用积分求解了级数S1=∑n=1∞an和S2=∑n=1∞a2n−1的值。问题涉及函数单调性、交点分析及常数项级数的求和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

频次: 1
出处: 2009-16、

知识树位置:

  • 一元函数微分学
    • 函数
      • 幂函数
        • 幂函数的性质

知识点内容:

定义

形如 f ( x ) = x n f(x) = x^n f(x)=xn 的函数,称为幂函数,其中 n n n 是常数.

性质

  1. n > 0 n>0 n>0 时:
    1. 函数图象都通过点 ( 0 , 0 ) , ( 1 , 1 ) (0,0),(1,1) (0,0)(1,1)
    2. x ∈ ( 0 , + ∞ ) x\in(0,+\infin) x(0,+),函数单调递增.
  2. n < 0 n<0 n<0 时:
    1. 函数图象都过点 ( 1 , 1 ) (1,1) (1,1)
    2. x ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) x\in(-\infin,0) \cup (0,+\infin) x(,0)(0,+),函数单调递减.

题目集:

【2009-16】
a n a_n an 为曲线 y = x n y=x^n y=xn y = x n + 1 ( n = 1 , 2 , . . . ) y=x^{n+1}(n=1,2,...) y=xn+1(n=1,2,...) 所围成区域的面积,记
S 1 = ∑ n = 1 ∞ a n , S 2 = ∑ n = 1 ∞ a 2 n − 1 S_1=\sum_{n=1}^{\infin}a_n,S_2=\sum_{n=1}^{\infin}a_{2n-1} S1=n=1anS2=n=1a2n1

S 1 、 S 2 S_1、S_2 S1S2 的值.
解:
∵ n > 0 \because n>0 n>0
∴ y = x n 与 y = x n + 1 的 交 点 为 ( 0 , 0 ) 和 ( 1 , 1 ) \therefore y=x^n与y=x^{n+1}的交点为(0,0)和(1,1) y=xny=xn+1(0,0)(1,1)
∴ \therefore
a n = ∫ 0 1 ( x n − x n + 1 ) d x = ( 1 n + 1 x n + 1 − 1 n + 2 x n + 2 ) ∣ 0 1 = 1 n + 1 − 1 n + 2 a_n=\int_0^1(x^n-x^{n+1})dx=(\dfrac{1}{n+1}x^{n+1}-\dfrac{1}{n+2}x^{n+2})|^1_0=\dfrac{1}{n+1}-\dfrac{1}{n+2} an=01(xnxn+1)dx=(n+11xn+1n+21xn+2)01=n+11n+21
余下在常数项级数一节求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值