热力学与统计物理学笔记

本文介绍了热力学的基本概念,包括热力学系统、平衡态和物态方程,如理想气体状态方程。热力学研究热现象的转化数量关系、过程方向及平衡条件。同时,提到了统计物理学从微观角度解释热现象,并讨论了理想气体的性质,如膨胀系数和压强系数。热力学第零定律和理想气体温标也在内容中得到阐述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        使用教材:《热力学与统计物理学》(北京大学物理丛书,北京大学出版社,“十一五”国家级规划教材。
        教学视频:热力学与统计物理_哔哩哔哩_bilibili

什么是热力学?

        热力学是研究热现象的宏观理论。热现象,包括热传递、做功、温度变化等。宏观尺度,是指微米到光年。达到百万光年级,则是宇观尺度。统计力学,又称统计物理学,则从微观层面研究热现象。

热力学研究的三个问题

        转化的数量关系
        过程进行的方向
        平衡的条件

热力学基本概念

        热力学系统
                气体系统(理想气体、非理想气体),磁系统、辐射系统
        绝热
        刚性
        孤立(无热量传递,无外界做功,无粒子束交换)
        开放系统、封闭系统
        平衡态

什么是平衡态?

        无外界影响下,系统各部分(如何定义“部分”?)性质(力、热、……)长时间(弛豫时间)不发生变化。

平衡态的描述

        状态变量:几何变量、力学变量、电磁变量、化学变量
        温度:态函数,由状态变量确定
        均匀系(单相系)、非均匀系(复相系)
        广延量、强度量

热平衡定律(热力学第零定律)

        处于热平衡状态的物体温度相等

理想气体温标(定压气体温标)

T_2 = \frac{V_2}{V_1}\ T_1

物态方程

        态函数之间的函数关系

T=f(p,V) 或 f(p,V,T)=0

        其中 T 为温度,p 为压强,V 为体积。

        例如,理想气体的物态方程为,T=\frac{pV}{nR},其中 T 为温度、p 为压强、V 为体积、n 为物质量、R=kN_A 为普适气体常量。

物态方程相关物理量

膨胀系数:\alpha \equiv \frac{1}{V}\bigg(\frac{\partial V}{\partial T}\bigg)_p,括号外的 p 表示压强不变

压强系数:\beta \equiv \frac{1}{p} \bigg ( \frac{\partial p}{\partial T} \bigg ) _V,括号外的 V 表示体积不变

等温压缩系数:\kappa _T \equiv - \frac{1}{V} \bigg( \frac{\partial V}{\partial p} \bigg)_T,括号外的 T 表示温度不变

        恒等符合 ≡ 在这里表示,等式左边是一个由右式定义的量。

        在理想气体下,\alpha = \beta \cdot \kappa _T \cdot p,将 \alpha, \beta, \kappa_T 的定义式代入,则可以转化为:

\bigg( \frac{\partial V}{\partial T} \bigg)_p \cdot \bigg( \frac{\partial T}{\partial p} \bigg)_V \cdot \bigg( \frac{\partial p}{\partial V} \bigg)_T=-1

         证明 1:

                      因为  \bigg( \frac{\partial V}{\partial T} \bigg)_p= -\lim \limits_{ \substack{V \to 0 \\ T \to 0} } \frac{\Delta V}{\Delta T}, \ \bigg( \frac{\partial T}{\partial p} \bigg)_V= -\lim \limits_{ \substack{T \to 0 \\ p \to 0} } \frac{\Delta T}{\Delta p}, \ \bigg( \frac{\partial p}{\partial V} \bigg)_T= -\lim \limits_{ \substack{p \to 0 \\ V \to 0} } \frac{\Delta p}{\Delta V}.

        证明 2:

x = V, \ y =T, \ z= p,

\therefore \bigg( \frac{\partial V}{\partial T} \bigg)_p \cdot \bigg( \frac{\partial T}{\partial p} \bigg)_V \cdot \bigg( \frac{\partial p}{\partial V} \bigg)_T = -1 \\

\Rightarrow \bigg( \frac{\partial x}{\partial y} \bigg)_z \cdot \bigg( \frac{\partial y}{\partial z} \bigg)_x \cdot \bigg( \frac{\partial z}{\partial x} \bigg)_y = -1

 \because z=f(x,y),\ dz=\bigg( \frac{\partial z}{\partial x} \bigg)_y \cdot dx+\bigg( \frac{\partial z}{\partial y} \bigg)_x \cdot dy

\therefore dz=0,\ \bigg( \frac{\partial z}{\partial x} \bigg)_y \cdot \big(dx \big)_z+\bigg( \frac{\partial z}{\partial y} \bigg)_x \cdot \big(dy \big)_z=0

\therefore \bigg( \frac{\partial z}{\partial x} \bigg)_y \cdot \bigg( \frac{\partial x}{\partial y} \bigg)_z + \bigg( \frac{\partial z}{\partial y} \bigg)_x = 0

\because dx=0, \big(dz\big)_x=\bigg( \frac{\partial z}{\partial y} \bigg)_x \cdot \big( dy \big)_x

\therefore 1 = \bigg( \frac{\partial z}{\partial y} \bigg)_x \cdot \bigg( \frac{\partial y}{\partial z} \bigg)_x

\therefore \bigg( \frac{\partial z}{\partial x} \bigg)_y \cdot \bigg( \frac{\partial x}{\partial y} \bigg)_z = - \bigg( \frac{\partial z}{\partial y} \bigg)_x

 \therefore \bigg( \frac{\partial z}{\partial x} \bigg)_y \cdot \bigg( \frac{\partial x}{\partial y} \bigg)_z \cdot \bigg( \frac{\partial y}{\partial z} \bigg)_x= - \bigg( \frac{\partial z}{\partial y} \bigg)_x \cdot \bigg( \frac{\partial y}{\partial z} \bigg)_x

 \therefore \bigg( \frac{\partial x}{\partial y} \bigg)_z \cdot \bigg( \frac{\partial y}{\partial z} \bigg)_x \cdot \bigg( \frac{\partial z}{\partial x} \bigg)_y = -1

常见的物态方程

        理想气体方程:

pV=nRT

        范德瓦耳斯气体方程:

\Big( p + \frac{n^2 a}{V^2} \Big) \Big( V - n b \Big) = n R T

                注:反映了气体分子、原子间的相互作用,反映了不可压缩性 

        昂尼斯方程:

         pV=nRT(1+A_2p+A_3p^2) 

流体体积变化的做功(准平衡态)过程

        外界对系统做的功:

W = -p \cdot dV

                 注:W 为过程量,不存在 \Delta W = W_2 - W_1.

        dV<0 时,外界对系统做正功;若系统对外界做功,即 {W}'=-W,则

W = -\int_{V_1}^{V_2}p\cdot dV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值