在landsat TM传感器中,2、3、4和5波段分别对应绿波段、红波段、近红外波段和中红外波段。
植被指数(NDVI)可以检测植被生长状态、植被覆盖度和消除部分辐射误差等。NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。
公式:(近红外波段-红波段)/(近红外波段+红波段)。
归一化差分水体指数(NDWI)(大于0部分为水域)用于提取水体影像信息。
公式:(绿波段-近红外波段)/(绿波段+近红外波段)
改进归一化差分水体指数(MNDWI)(大于0部分为水域)用于提取水体影像信息,比NDWI更能区分水体细微特征和阴影。
公式:(绿波段-中红外波段)/(绿波段+中红外波段)
相交:输出结果为相交部分的最小要素,并且附带了其他要素的全部属性。
标识:输出结果为所有的输入要素,并且被标识部分的要素附带了标识要素的全部属性(适用于点线面单要素之间的确认关系)。
联合:输出结果为各面要素(联合中涉及的要素都是面要素)上面叠加的所有其他要素属性信息,用于计算多个要素图层叠加后进行统计运算。
空间连接:输出结果为所有目标要素或者目标要素中与连接要素相交的要素,并且附带了连接要素中各属性的统计值(适用于点线面的多要素之间互相统计,极值,值域,总和,平均值)
填挖方:一个是填挖方之前的栅格,一般直接是DEM数据,另外一个是填挖方之后的栅格数据,一般是一个平面栅格,高程介于DEM的极值之间,这样针对原始高程数据才会有净收益(被填充的区域)和净损失(被挖掉的区域)从而达到填挖方之后的平面栅格。
表面体积:输入数据为DEM数据,平面高度将DEM数据划分成上下两部分地区范围,可以统计其2D面积,3D面积和体积。
在字段计算器中:
1.VB:Mid([字段名称],字符串开始读取位置,读取长度) 作用:提取指定长度的字符串
2.Python:MAX([字段1,字段2,字段3,字段4])
3.Python判断字符串相等时应该在字符串前面加上u进行强制转换;
最后参加比赛时由于基础知识不牢固,导致在地理配准这个常用操作上浪费了很多时间。在地理配准时应该注意到是否需要转换图形,零阶多项式仿射适用于两个图形之间只需要简单的平移,如果涉及到缩放和旋转,这时候务必记得使用一阶多项式仿射!!!如果还不满足配准要求,则需要使用2阶多项式仿射了。阶数越高变形约大,外推误差越大。
批处理如果电脑配置允许可以多。