输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
我的代码:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
ans = -float('inf')
sum = 0
for i in range(len(nums)):
if i == 0:
sum = nums[0]
elif nums[i] >= nums[i]+sum:
sum = nums[i]
else:
sum += nums[i]
ans = max(ans, sum)
return ans
大佬的代码:大佬的思路是这样:
思考动态规划转移方程,构造dp列表,再通过优化,将dp列表省去~
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
for i in range(1, len(nums)):
nums[i] += max(nums[i - 1], 0)
return max(nums)