sklearn实战之决策树

sklearn实战系列
(1) sklearn实战之决策树
(2) sklearn实战之随机森林
(3) sklearn实战之数据预处理与特征工程
(4) sklearn实战之降维算法PCA与SVD
(5) sklearn实战之逻辑回归与制作评分卡
(6) sklearn实战之聚类算法

一、决策树

0、决策树简介

0.1决策树是如何工作的

决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规 则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各 种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。 我们来简单了解一下决策树是如何工作的。决策树算法的本质是一种图结构,我们只需要问一系列问题就可以对数 据进行分类了。比如说,来看看下面这组数据集,这是一系列已知物种以及所属类别的数据:

数据
我们现在的目标是,将动物们分为哺乳类和非哺乳类。那根据已经收集到的数据,决策树算法为我们算出了下面的 这棵决策树:

决策树
假如我们现在发现了一种新物种Python,它是冷血动物,体表带鳞片,并且不是胎生,我们就可以通过这棵决策 树来判断它的所属类别。

可以看出,在这个决策过程中,我们一直在对记录的特征进行提问。最初的问题所在的地方叫做根节点,在得到结 论前的每一个问题都是中间节点,而得到的每一个结论(动物的类别)都叫做叶子节点。

关键概念节点
根节点:没有进边,有出边。包含最初的,针对特征的提问
中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。

决策树算法的核心是要解决两个问题:

1)如何从数据表中找出最佳节点和最佳分枝?

2)如何让决策树停止生长,防止过拟合?

1、sklearn中的决策树

  • 模块sklearn.tree

决策树中决策树的类都在"tree"这个模块之下。其中包括5个类:

名称功能
tree.DecisionTreeClassifier分类树
tree.DecisionTreeRegressor回归树
tree.export_graphviz将生成的决策树导出为DOT格式,画图专用
tree.ExtraTreeClassifier高随机版本的分类树
tree.ExtraTreeRegressor高随机版本的回归树
  • sklearn的基本建模流程

sklearn建模流程

上述整个过程中分类决策树相应的代码如下:

from sklearn import tree 					#导入需要的模块
clf = tree.DecisionTreeClassifier()     	#实例化
clf = clf.fit(X_train,y_train) 				#用训练集数据训练模型
result = clf.score(X_test,y_test)			#导入测试集,从接口中调用需要的信息

2、DecisionTreeClassifier与红酒数据集

class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False
2.1重要参数
2.1.1 criterion

为了要将表格转换为一棵树,决策树需要找到最佳节点和最佳的分支方法,对于分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分支方法上的核心大多是围绕在对其不纯度相关指标的最优化上。

不纯度基于节点来及计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一颗决策树上,叶子节点的不纯度一定是最低的。

cirterion这个参数正是用来决定不纯度的计算方法的。Skearn提供了两种选择:

(1)当criterion=“gini”,使用基尼系数

(2)当criterion="entropy"时。使用信息熵

信息熵&基尼系数

其中t代表给定的节点,i代表标签的任意分类, p ( i ∣ t ) p(i|t) p(it)代表标签分类i在节点t上所占的比例。注意,当使用信息熵 时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差.

比起基尼指数,信息熵对不纯度更加敏感,对于不纯度的惩罚最强,但是在实际应用中,信息熵和基尼系数的效果基本相同,信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以使用信息熵作为指标时,决策树的生产会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往较好。当模型拟合程度不足时,即当模型训练集和测试集表现都不太好的时候,使用信息熵。当然这不是绝对的。

参数criterion
如何影响模型?确定不纯度的计算方法,帮忙找出最佳节点和最佳分支,不纯度越低,决策树对训练集的拟合越好。
可能的输入不填默认gini。
怎样选取参数?通常就使用基尼系数 数据维度很大,噪音很大时使用基尼系数 维度低,数据比较清晰的时候,信息熵和基尼系数没区别 当决策树的拟合程度不够的时候,使用信息熵 两个都试试,不好就换另外一个。

因此,决策树的基本流程可以简单概括为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ta7x6bCE-1628690388425)(D:\typora\picture\决策树-建模.jpg)]

  • 建立一棵树

1、导入需要的算法库和模块

from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

2、探索数据

wine = load_wine()
wine.data.shape
wine.target
#如果wine是一张表,应该长这样:
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
wine.feature_names
wine.target_names

3、划分训练集和测试集

Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
Xtrain.shape
Xtest.shape

4、模型

clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest) #返回预测的准确度
score

5、画出决策树

feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜
色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
import graphviz
dot_data = tree.export_graphviz(clf
                               ,out_file = None
                               ,feature_names= feature_name
                               ,class_names=["琴酒","雪莉","贝尔摩德"]
                               ,filled=True
                               ,rounded=True
                               )
graph = graphviz.Source(dot_data)
graph

决策流程

6、探索决策树

#特征重要性
clf.feature_importances_
[*zip(feature_name,clf.feature_importances_)]

我们已经在只了解一个参数的情况下,建立了一棵完整的决策树。但是回到步骤4建立模型,score会在某个值附近 波动,引起步骤5中画出来的每一棵树都不一样。它为什么会不稳定呢?如果使用其他数据集,它还会不稳定吗?

我们之前提到过,无论决策树模型如何进化,在分枝上的本质都还是追求某个不纯度相关的指标的优化,而正如我 们提到的,不纯度是基于节点来计算的,也就是说,决策树在建树时,是靠优化节点来追求一棵优化的树,但最优 的节点能够保证最优的树吗?集成算法被用来解决这个问题:sklearn表示,既然一棵树不能保证最优,那就建更 多的不同的树,然后从中取最好的。怎样从一组数据集中建不同的树?在每次分枝时,不从使用全部特征,而是随 机选取一部分特征,从中选取不纯度相关指标最优的作为分枝用的节点。这样,每次生成的树也就不同了。

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest) #返回预测的准确度
score
2.1.2 random_state & splitter

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据 (比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会 优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在 分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这 也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能 性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合。

clf = tree.DecisionTreeClassifier(criterion="entropy"
                                 ,random_state=30
                                 ,splitter="random"
                                 )
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score
import graphviz
dot_data = tree.export_graphviz(clf
                               ,feature_names= feature_name
                               ,class_names=["琴酒","雪莉","贝尔摩德"]
                               ,filled=True
                               ,rounded=True
                               )  
graph = graphviz.Source(dot_data)
graph
2.1.3 剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多可分的特征为止。这样往往会导致过拟合。也就是说,在训练数据集上表现很好,在测试数据集上却表现很糟糕,我们收集的样本不可能和整体样本的状况完全一直,因此当一颗决策树对训练数据有了过于优秀的解释性,他找出的规则必然包括了训练样本上的噪声,因此对位置的测试数据的拟合程度不足。

#我们的树对训练集的拟合程度如何?
score_train = clf.score(Xtrain, Ytrain)
score_train

在前面没有使用剪枝参数的情况下,score_train = 1!

为了让决策树有更好的泛化性,我们要对决策树进行剪枝,sklearn为我们提供了不同的剪枝策略。

  • max_depth

限制树的最大深度,超过设定深度的树枝会被全部剪掉。

这是用得最广泛的剪枝参数,在高维度地样本量时非常有效。角儿书多生长一层,对样本的需求会增加一倍,所以限制树深度能够有效限制过拟合。在集成算法中也非常使用。实际使用时,建议先从max_depth=3开始尝试。看拟合效果再决定是否增加深度。

  • max_samples_leaf & max_samples_split

max_samples_leaf限定时,一个节点在分支后的每个子节点都必须至少含有in_samples_leaf个样本的方向去发生。

一般搭配max_depth使用,在回归树中可以是模型更加平滑。这个参数的数量设置得太小得话会引起过拟合,设置的太大会阻止模型学习数据。一般来说,从max_samples_leaf=5开始使用。如果叶节点中含有得样本量变化很大,建议输入浮点数作为样本量的百分比来使用。同时,这个参数可以保证每个叶子的最小尺寸。可以在回归中避免低方差,过拟合的叶子节点出现。对于类别不多的分类问题,=1通常时最佳选择。

min_samples_split限定,一个节点必须要包含min_samples_split个训练样本,这个节点才被允许分支,否则分支就不会发生。

clf = tree.DecisionTreeClassifier(criterion="entropy"
                                 ,random_state=30
                                 ,splitter="random"
                                 ,max_depth=3
                                 ,min_samples_leaf=10
                                 ,min_samples_split=10
                                 )
clf = clf.fit(Xtrain, Ytrain)
dot_data = tree.export_graphviz(clf
                               ,feature_names= feature_name
                               ,class_names=["琴酒","雪莉","贝尔摩德"]
                               ,filled=True
                               ,rounded=True
                               )  
graph = graphviz.Source(dot_data)
graph
clf.score(Xtrain,Ytrain)
clf.score(Xtest,Ytest)
  • max_features & max_impurity_split

一般搭配max_depth使用,用作树的“精修”。

max_features限制分支时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工。

max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的参数数量而强行使决策树停下的参数。在不知道决策树的各个特征重要性下,有可能会导致模型学习不足。如果希望通过降维的方法来防止过拟合,建议使用PCA,ICA或特征选择模块中的降维算法

min_impurity_split限制信息增益的大小,信息增益小于设定数值的分支不会发生。

  • 如何确定最优的剪枝参数?

那具体怎么来确定每个参数填写什么值呢?这时候,我们就要使用去认定超参数的曲线来进行判断了,继续使用我们已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲线。 在我们的建好的决策树中,我们模型的度量指标就是score( R 2 R^2 R2)

import matplotlib.pyplot as plt
test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(max_depth=i+1
                                     ,criterion="entropy"
                                     ,random_state=30
                                     ,splitter="random"
                                     )
    clf = clf.fit(Xtrain, Ytrain)
    score = clf.score(Xtest, Ytest)
    test.append(score)
plt.plot(range(1,11),test,color="red",label="max_depth")
plt.legend()
plt.show()

决策树
注:graphviz库需要额外安装,安装教程为:graphviz安装

思考:

1、剪枝参数一定能够提升模型在测试集上的表现嘛?

调参没有绝对的答案,一切都是看数据本身。

2、这么多参数,一个个画学习曲线?

后面会介绍如果绘制所有参数的学习曲线。

无论如何:剪枝参数的默认值都会让树无限制的生长,这些树在某些数据集上可能时非常巨大,对内存的消耗也是非常巨大的。所以,当你手中的数据集非常巨大,你已经预测到无论如何你都是要剪枝的,那提前设定这些参数来控制树的复杂性和大小会比较好。

2.1.4 目标权重参数
  • class_weight & min_weight_fraction_leaf

完成样本标签平衡的参数。样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例。比如说,在银行要判断”一个办了信用卡的人是否会违约“,就是 是VS否(1% VS 99 %)的比例。在这种分类状况下,即使模型什么都不做,全把模型预测成”否“,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中所有标签相同的权重。

有了权重之后,样本俩那个就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_weight_fraction_leaf这个基于权重的剪枝参数来使用。另外注意:基于权重的剪枝参数(例如min_weight_fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf )更加偏向主导类。如果样本是加权的,则使用基于权重的预修剪标准更容易来优化树结构,这确保叶节点至少包含样本权重的总和的一部分。

2.2 重要的属性和接口

属性是在模型训练之后,能够调用查看模型的各种性质。对决策树来说,最重要的是feature_importances_,能够查看各个特征对模型的重要性。

Skearn中许多算法的接口都是相似的,比如我们之前已经用到的fit和score,几乎对每个算法都可以使用。除了这两个接口之外,决策树最常用的接口还有apply和predict。**apply中输入测试集返回每个测试样本所在的叶子节点的索引,predict输入测试集返回每个测试样本的标签。**返回的内容一目了然并且非常容易。

在这里不得不提的是,**所有接口中要求输入的Xtrain,Xtest的部分,输入的特征矩阵必须至少是个二维矩阵,sklearn不接受任何一维矩阵作为特征矩阵被输入。**如果你的数据 是一维的(一个特征),可以使用reshape(-1,1)来给数据增维;若是只有一个特征一个样本,使用reshape(-1,1)增维。

#apply返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)
#predict返回每个测试样本的分类/回归结果
clf.predict(Xtest)

至此,我们已经学完了分类树DecisionTreeClassifier和用决策树绘图(export_graphviz)的所有基础。我们讲解 了决策树的基本流程,分类树的八个参数,一个属性,四个接口,以及绘图所用的代码。

八个参数:Criterion,两个随机性相关的参数(random_state,splitter),五个剪枝参数(max_depth, min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)

一个属性:feature_importances_

四个接口:fit,score,apply,predict

3、DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor 
(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

几乎所有参数,属性及接口都和分类树一模一样。需要注意的是,在回归树种,没有标签分布是否均衡的问题,因 此没有class_weight这样的参数。

3.1重要参数、属性及接口
  • criterion

回归树衡量分支质量的指标,有以下三种:

(1)输入"mse"均方误差(mean squared error)。父节点和叶节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过对叶子节点的均值来最小化L2损失。

(2)输入”fredman_mse“使用费尔德曼均方误差,这种指标使用福利费尔德曼针对潜在分支中的问题改进后的均方误差

(3)输入”mae“使用绝对平均误差MAE(mean absolute error),这指标使用叶节点的中值来最小化 L1损失。

属性中最重要的依然是feature_importances_,接口依然是apply、fit、predict、score最核心。

**在回归树中,MSE不只是我们的分支质量衡量指标,也只我们最常用的衡量回归树回归质量的指标。**当我们使用交叉验证,或者其他方式获取回归树你的结果时,我们往往选取MSE作为我们的评估。MSE越小,说明我们的回归效果越好。然而,回归树score接口返回的和分类树一样,是R平方,并不是MSE。

其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi 是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于 模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。 值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均 方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10, 
                scoring = "neg_mean_squared_error")
#交叉验证cross_val_score的用法

可见,回归树学习了近似正弦曲线的局部线性回归。我们可以看到,如果树的最大深度(由max_depth参数控制)设置的太大,则决策树学习的太精细,他从训练数据中学到了很多细节,包括噪声,从而使模型偏离真实的正弦曲线,形成过拟合。

4、决策树的优缺点

决策树优点:

  1. 易于理解和解释,因为树木可以画出来被看见

  2. 需要很少的数据准备。其他很多算法通常都需要数据规范化,需要创建虚拟变量并删除空值等。但请注意, sklearn中的决策树模块不支持对缺失值的处理。

  3. 使用树的成本(比如说,在预测数据的时候)是用于训练树的数据点的数量的对数,相比于其他算法,这是 一个很低的成本。

  4. 能够同时处理数字和分类数据,既可以做回归又可以做分类。其他技术通常专门用于分析仅具有一种变量类 型的数据集。

  5. 能够处理多输出问题,即含有多个标签的问题,注意与一个标签中含有多种标签分类的问题区别开

  6. 是一个白盒模型,结果很容易能够被解释。如果在模型中可以观察到给定的情况,则可以通过布尔逻辑轻松 解释条件。相反,在黑盒模型中(例如,在人工神经网络中),结果可能更难以解释。

  7. 可以使用统计测试验证模型,这让我们可以考虑模型的可靠性

  8. 即使其假设在某种程度上违反了生成数据的真实模型,也能够表现良好。

决策树的缺点:

  1. 决策树学习者可能创建过于复杂的树,这些树不能很好地推广数据。这称为过度拟合。修剪,设置叶节点所 需的最小样本数或设置树的最大深度等机制是避免此问题所必需的,而这些参数的整合和调整对初学者来说 会比较晦涩
  2. 决策树可能不稳定,数据中微小的变化可能导致生成完全不同的树,这个问题需要通过集成算法来解决。
  3. 决策树的学习是基于贪婪算法,它靠优化局部最优(每个节点的最优)来试图达到整体的最优,但这种做法 不能保证返回全局最优决策树。这个问题也可以由集成算法来解决,在随机森林中,特征和样本会在分枝过 程中被随机采样。
  4. 有些概念很难学习,因为决策树不容易表达它们,例如XOR,奇偶校验或多路复用器问题。
  5. 如果标签中的某些类占主导地位,决策树学习者会创建偏向主导类的树。

因此,建议在拟合决策树之前平衡数据集.

  • 10
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值