常微分方程

本文详细介绍了常微分方程中如何使用变量代换法解决齐次方程及其特殊形式的方程。分别讲解了2.2.1 齐次方程变量代换法,2.2.2 可化为齐次方程的方程,以及2.2.3 某些特殊的变量代换,并通过具体例子说明解题步骤。
摘要由CSDN通过智能技术生成

2.2.1 齐次方程变量代换法

先了解一下齐次方程即简化后的方程中所有非零项的指数相等,通俗点说就是方程中多项式xayb,a+b的值都相等。
例如:

f ( x , y ) = x 3 + y 2 x + y 3 x y 2 = 1 + y x + ( y x ) 3 ( y x ) 2 f(x,y)=\frac{x^{3}+y^{2}x+y^{3}}{xy^{2}} = \frac{1+\frac{y}{x}+(\frac{y}{x})^{3}}{(\frac{y}{x})^{2}} f(x,y)=xy2x3+y2x+y3=(xy)21+xy+(xy)3,即形如 d y d x = g ( y x ) = g ( u ) \frac{\mathrm{d}y}{\mathrm{d}x}=g(\frac{y}{x})=g(u) dxdy=g(xy)=g(u)
叫做齐次微分方程
y x = u , d y = u d x + x d u . u + x d u d x = g ( u ) x d u d x = g ( u ) − u \frac{y}{x}=u,dy=udx+xdu. \\u+x\frac{\mathrm{d}u}{\mathrm{d}x}=g(u) \\x\frac{\mathrm{d}u}{\mathrm{d}x}=g(u)-u xy=u,dy=udx+xdu.u+xdxdu=g(u)xdxdu=g(u)u得到一个变量分离方程,
g ( u ) − u ≠ 0 g(u)-u\neq0 g(u)u=0时方程可写为 ∫ d u g ( u ) − u = ∫ d x x \int \frac{\mathrm{d}u}{g(u)-u}=\int \frac{\mathrm{d}x}{x} g(u)udu=xdx因此可得到 G ( u ) = ln ⁡ ∣ x ∣ + c G(u)=\ln \left | x\right |+c Gu=lnx+c
G ( u ) G(u) Gu) g ( u ) − u g(u)-u g(u)u的原函数。
若当 u = u 0 u=u_{0} u=u0时, g ( u ) − u = 0 g(u)-u=0 g(u)u=0,则 y

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值