anaconda下载安装(GPU版本)

本文详细介绍了如何安装Anaconda,包括选择安装路径,创建新的虚拟环境,以及如何配置清华镜像以加速下载。接着,文章讲解了在环境中安装CUDA工具包和PyTorch的具体步骤,特别是对于CUDA11.0版本的问题,作者选择了安装与之兼容的PyTorch1.11.0版本。最后,文章还涵盖了如何在PyCharm中配置新建的虚拟环境,并设置终端命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

anaconda安装

下载好安装包之后,直接双击运行

然后next

 

 下一步新建个文件夹用来安装到这个地方

 

 四个全选

 最后去掉这两个勾选

安装好之后,搜索这个然后打开,这就是anaconda的图形化界面 

如果显示有这个base的默认虚拟环境就成功了

创建虚拟环境

接下来创建一个自己的虚拟环境,打开anaconda prompt后输入下面代码,利用清华镜像速度比较快

conda create -n project1 python=3.10 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

然后出现一大堆东西,不用管他,不出问题的话,会出现让你确认,输入y按回车

创建完之后再打开anaconda可视化界面会吃先刚才新建的虚拟环境 

接下来为我们新建的这个虚拟环境配一个镜像,不然安装什么东西速度都会很慢

在自己环境下输入

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

如图

 然后用指令

conda config --get

进行验证,可以看到优先从我们刚才配的源下载

接下来装pytorch,我的cuda是12.0的,pytorch官网上压根没有12.0对应的版本,最新的只有11.7和11.8对应的pytorch版本,这两个我在国内源压根找不到,在官方装(不仅时间长而且最后也没成功)最后也失败了,我索性直接装了11.6对应的版本

先装cudatoolkit ,命令是

conda install cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

再装pytorch、torchvision、torchaudio,命令是

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 -c https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/win-64/

 最后可以看到安装成功了,装的时候一定要看清pytorch是cuda版本的,别装成cpu的了

 

pycharm配置新建的虚拟环境

首先打开pycharm,new project

 注意我画的这三个圈

location就是你的代码想存在哪里,岁表找个位置新建一个文件夹就行

中间的圈代表我们要从本地导入python解释器(刚才创建的project1就是一个虚拟环境,现在要导入进来)

最后一个圈就是从这里(本地)进行导入

 

 然后选择virtualenv environment,以前都是直接从conda环境导入,现在应该改了单证我从conda里面找不我刚才建立的虚拟环境。

再选择Existing,点击后面三个点

 找到这个python.exe导进来就可以了

 然后像我这样,点击create创建,注意最后的code就是你的项目的名字

 创建完环境后要配terminal,如图,选择这个,就能直接在下面打开终端命令了

 

### 回答1: 要安装MXNet GPU版本,可以使用Anaconda进行安装。以下是安装步骤: 1. 打开Anaconda Navigator,进入“Environments”界面。 2. 在“Environments”界面中,点击“Create”按钮创建一个新的环境。 3. 在创建环境的界面中,输入环境名称,并选择Python版本。建议选择Python 3.x版本。 4. 在“Packages”选项卡中,选择“Not Installed”选项,然后在搜索框中输入“mxnet”进行搜索。 5. 选择“mxnet-cuXX”(XX表示CUDA版本号)进行安装。如果您的电脑上安装了CUDA 10.,则应选择“mxnet-cu100”。 6. 点击“Apply”按钮进行安装。 7. 安装完成后,您可以在新创建的环境中使用MXNet GPU版本。 希望这些步骤能够帮助您安装MXNet GPU版本。 ### 回答2: Anaconda 是一款用于科学计算和数据分析的开源 Python 环境管理工具,它可以帮助用户快速搭建科学计算环境,并方便地管理 Python 第三方库。MXNet 是一种深度学习框架,支持多种计算平台和编程语言,包括 CPU/GPU/CUDA/SSE/AVX 等。在 Anaconda安装 MXNet GPU 版本可以加速深度学习计算,并提高计算效率。以下是安装步骤: 第一步,安装 Anaconda。可以从官网下载适合自己操作系统的 Anaconda 安装包,然后按照指示进行安装。 第二步,安装 CUDA。MXNet GPU 版本需要依赖 CUDA 工具包,因此需要先安装 CUDA 。可以到 NVIDIA 官网下载对应版本的 CUDA 安装包,然后按照指示进行安装。 第三步,安装 CUDNN。CUDNN 是一个深度神经网络的加速库,同样需要安装。可以到 NVIDIA 官网下载适合自己操作系统和 CUDA 版本的 CUDNN 安装包,然后按照指示进行安装。 第四步,安装 MXNet。打开 Anaconda Prompt,输入以下命令安装 MXNet: ``` conda install mxnet-gpu ``` 如果要安装指定版本的 MXNet,可以使用以下命令: ``` conda install mxnet-gpu=1.7.0 ``` 最后,测试是否安装成功。在 Python 环境中输入以下命令: ``` import mxnet as mx a = mx.nd.ones((2, 3), mx.gpu()) ``` 如果没有错误提示,说明 MXNet GPU 版本安装成功。 总的来说,安装 MXNet GPU 版本需要依次安装 Anaconda、CUDA、CUDNN 和 MXNet,并且需要注意版本之间的兼容性。安装完毕后,可以通过 Python 环境进行调用和使用,并且可以提高深度学习计算效率。 ### 回答3: MXNet是深度学习领域中非常重要的深度学习框架,近年来得到了越来越多的关注。对于需要快速地构建和训练机器学习模型的开发者来说,MXNet是一个非常不错的选择。然而,为了获得最好的性能,我们需要安装MXNet GPU版本。下面我们来介绍如何在anaconda安装MXNet GPU版本。 1. 安装CUDA和CuDNN 首先,我们需要在安装MXNet GPU版本之前安装CUDA和CuDNN。这是因为MXNet GPU版本需要依赖于CUDA和CuDNN库。在安装前请先到NVIDIA官网上下载CUDA和CuDNN的对应版本,如果不知道如何选择版本,可以先查看MXNet的官方文档。 2. 创建conda环境 为了避免所有依赖项之间的冲突,我们可以通过创建一个conda环境来安装MXNet GPU版本。首先,在终端中输入以下命令来创建一个新的conda环境(例如,名为mxnet_gpu_env): ``` conda create -n mxnet_gpu_env python=3 ``` 安装完成后,我们需要激活这个环境以便安装MXNet GPU版本: ``` conda activate mxnet_gpu_env ``` 3. 安装MXNet GPU版本 安装MXNet GPU版本安装MXNet CPU版本稍微复杂一些。我们需要指定MXNet版本(例如1.6.0),构建平台(例如Linux或Windows)以及CUDA的版本和路径。在终端中输入以下命令来安装MXNet GPU版本: ``` pip install mxnet-cu101==1.6.0 -f https://s3.us-east-2.amazonaws.com/mxnet-public ``` 其中,cu101表示的是CUDA 10.1版本,如果使用其他的CUDA版本,则需要相应地更改。 4. 验证MXNet GPU版本 为了验证MXNet GPU版本是否安装成功,我们可以在Python交互式界面中输入以下代码: ``` import mxnet as mx mx.test_utils.list_gpus() ``` 如果MXNet GPU版本已成功安装,则应该会输出所有可用的GPU的数量和类型。 总结 通过以上步骤,我们就可以在anaconda安装MXNet GPU版本。需要注意的是,对于不同的CUDA版本和MXNet版本安装命令也会有所不同。因此,建议大家在安装之前先仔细阅读官方文档,以免出现安装不成功的情况。同时,我们需要确保自己的硬件配置足够支撑MXNet GPU版本的需求,这样才能充分发挥MXNet GPU版本的性能优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁蛋阳阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值