目录
1、时间复杂度
时间复杂度并不是指一个算法具体运行的时间是多久,而是指算法的执行次数。
一般用大O阶渐进法表示,看的是最坏情况。
1.1 大O阶表示法
(1)用1取代运行时间中的所有加法常数;
(2)修改后的运行次数,要求只保留最高阶;
(3)如果最高阶的系数不为,则要变为1。
1.2 具体案例分析
案例1:基础函数
// 计算func2的时间复杂度?
void func2(int N) {
int count = 0;
for (int k = 0; k < 2 * N ; k++) {
count++;
} in
t M = 10;
while ((M--) > 0) {
count++;
} S
ystem.out.println(count);
}
分析:基本执行了2N+10次,时间复杂度是O(N)。
案例2:基础函数
// 计算func3的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++;
} f
or (int k = 0; k < N ; k++) {
count++;
} S
ystem.out.println(count);
}
分析:基本执行了M+N次,无法比较M和N的大小,两个阶数相同,所以为O(M+N);
案例3:基础函数
// 计算func4的时间复杂度?
void func4(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
count++;
} S
ystem.out.println(count);
}
分析:执行了100次循环,所以为O(1);
案例4:冒泡排序
/ 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
for (int i= array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
} if(sorted == true) {
break;
}
}
}
分析:最坏情况下,就是这个顺序刚好是逆序,这个时候每次都要进行交换。我觉得这个用具体的数字带进去比较好理解:比如要排序的元素是54321,外层循环i从1开始加到5,执行5次,内层循环i=1第一次循环的时候,第一个元素要和后面4个元素一直交换执行4次;第二次循环,内层要从2个元素开始要与后面的3个元素交换3次...依次类推,要执行4+3+2+1+0次=10次。
类比:当有n个元素,外层循环要执行n次,内层循环要执行(n-1)+(n-2)+...+1+0次=(n*(n-1)) /2 次用大O阶来表示就是O(n^2) 。
案例5:二分法查找
/ 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
分析:最坏情况下,每次都要排除掉一半的不合适的值,n/2/2/2/....1,要进行次。
案例6:阶乘递归
// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}
分析:递归算法的时间复杂度本质上是要看: 递归的次数 * 每次递归中的操作次数。也是用具体数字理解比较容易:求f(5)的阶乘递归,将递归的式子展开,也就是执行了5次。类推该算法的复杂度为O(N)。
案例7:Fibo数列
/
/ 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}
分析:使用公式推导我觉得比较容易理解,参考该博主的博客~
2.空间复杂度
空间复杂度是指程序运行过程中额外占用的内存大小,也是用大O渐进法表示。
具体案例分析
案例1:冒泡排序
/
/ 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
} if(sorted == true) {
break;
}
分析:使用了常数个额外空间(boolean sorted = true;),所以空间复杂度为 O(1)。
案例2:Fibo数列
/
/ 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
分析:new关键字动态开辟了N+1个空间,空间复杂度为 O(N)。
案例3:阶乘递归
/
/ 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N;
}
分析:注意:递归每调用一次函数,都会在栈上开辟栈帧空间。递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。
好啦~今天就学到这,下次继续~