leetcode53. 最大子数组和(动态规划)

本文解析了如何使用动态规划解决最大子数组和问题,通过实例和代码展示了如何定义状态转移方程、初始化dp数组并遍历求解的过程。重点在于理解dp数组含义和状态转移规则在求解nums=[5,4,-1,7,8]中的应用。
摘要由CSDN通过智能技术生成

一:题目

在这里插入图片描述

二:上码


class Solution {
public:
    int maxSubArray(vector<int>& nums) {

    /**
    动态规划:
        1>:确定dp数组的含义以及下标的含义
            dp[j]表示的是下标j之前的最大子数组和  这个就是还没有包括nums[j] 
        2>:确定dp数组的状态转移公式
            dp[j] = max (dp[j-1]+nums[j],nums[j]);
            //dp[j-1] +  nums[j]:表示的是累加的和
            //nums[j]:从头开始计算累加和  可能前面累加值小于0
        3>:确定dp数组的初始化
            dp[0] = nums[0];
            因为dp[j] 可能要依赖  dp[j-1]
        4>:确定dp数组的遍历顺序
            从前向后

            if(dp[j] > max) max = dp[j] //计算我们的最大值  也可以最后遍历整个dp数组进行求解

        5>:举例验证
            nums = [5,4,-1,7,8]
            
                5 4 -1  7  8
           dp:  5 9  8 15 23 
    */
    vector<int> dp(nums.size(),0);
    int maxx = nums[0];//当剩下一个数的时候是可以解出来的

    dp[0] = nums[0];

    for (int i = 1; i < nums.size(); i++) {
        dp[i] = max(dp[i-1]+nums[i],nums[i]);
        
        if(dp[i] > maxx) maxx = dp[i];
    }

    return maxx;
    }
};




在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值