leetcode583. 两个字符串的删除操作

一:题目

在这里插入图片描述

二:上码

class Solution {
public:
    /**
        思路:题目给的是让求最值,那么首先就会想到的是动态规划,我们想得到答案的结果其实有多个的,但是我们是取最小的步数

            动态规划 五步走:
            1>:确定dp数组以及下标的含义
                dp[i][j]表示的是  以下标i-1结尾的字符串word1,和以下标j-1结尾的word2,如果想要两个字符串相等
                所需删除元素的最小个数。

                这里我们定义的dp[i][j]中下标是比 字符串中的下标大一位。


            2>:确定dp数组的状态递推公式

                当word1[i-1] 和 word2[j-1] 相等的时候
                    dp[i][j] = dp[i-1][j-1];
                当word1[j-1] 和 word2[j-1] 不相等的时候
                    我们可以删除word1[i-1] 那么的话  dp[i][j] = dp[i-1][j] + 1;
                    我们也可以删除word2[j-1] 那么的话 dp[i][j] = dp[i][j-1] + 1;
                    我们也可以同时删除 dp[i][j] = dp[i-1][j-1] + 2;
                那么我们最终的取值的话 肯定是要取最小值
                dp[i][j] = min(,,);

                总结:我们在推导这个递推公式的时候 我们可以先假设好的情况 然后再去推断错误的情况
                比方说  两个字符串中  前两个字符都是相等的  那么的话 dp[i][j] = dp[i-1][j-1] = 0
                也就是说我们不需要进行什么操作,
                当第三个字符不相等的时候,我们可以知道的是  这时候要做的事情就是要删除一个字符
                我们可以删除任意一个字符串中的字符,那么的话,我们就是在删除那个字符的基础上,剩下的字符串,
                与完整的字符串  也就是dp[i-1][j] 或则 dp[i][j-1]  在其基础上 + 1 因为我们多了一次删除操作
            3>:确定dp数组的初始化
                    dp[i][0] 和 dp[0][j] 一定要初始化
                    因为dp[i][0]的话,也就是word2为空字符串 那么就是word1有几个字符串就要删除几个

            4>确定dp数组的遍历顺序
                哪个字符串在外层或者内层均可;
            
            5>:举例验证        

                     s e a
                   0 1 2 3
                 e 1 2 1 2
                 a 2 2 2 1  //这里为2的是指的是word1 删除的字符+ word2 删除的字符
                 t 3 3 3 2
    **/
    int minDistance(string word1, string word2) {
            vector<vector<int> >dp(word1.size()+1,vector<int>(word2.size()+1,0));

            for (int i = 1; i <= word1.size(); i++) {
                dp[i][0] = i;
            }

            for (int j = 1; j <= word2.size(); j++) {
                dp[0][j] = j;
            }


            for (int i = 1; i <= word1.size(); i++) {
                for (int j = 1; j <= word2.size(); j++) {
                    if (word1[i-1] == word2[j-1]){
                        dp[i][j] = dp[i-1][j-1];//状态转移方程  就是将上一个状态转移到当前状态
                    } else {
                        dp[i][j] = min(min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+2);
                    }
                    
                }
            }
            return dp[word1.size()][word2.size()];
    }
};

在这里插入图片描述

状态转移方程就是将上个状态转移下来,也就是说 当前的状态对其没什么影响,但是如果什么加减操作的话,那也是在上个状态下进行的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值