1. 用最长公共子序列处理,就是两个字符串的总和,减去两倍的最长公共子序列,得到的差就是最小删除字符的操作
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for(int i = 1; i <= word1.size(); i++)
{
for(int j = 1 ;j <= word2.size(); j++)
{
if(word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];
}
};
2. 常规
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for(int i = 0; i <= word1.size() ; i++)
dp[i][0] = i; // 如果s 为 i 个, t 为 0 个,则说明s要删除 i 次
for(int j = 0; j <= word2.size(); j++)
dp[0][j] = j; // 如果t 为 j 个, s 为 0 个,则说明t要删除 j 次
for(int i = 1; i <= word1.size(); i++)
{
for(int j = 1 ; j <= word2.size(); j++)
{
if(word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1]; // 如果相等就不进行操作
else
{
// 表示分别删 s 、 t 、 s t 都删
dp[i][j] = min(min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 2);
}
}
}
return dp[word1.size()][word2.size()];
}
};