【数据分享】2001~2013年MOD17A3HGF GPP和NPP数据

本文介绍了2001-2013年间MODIS/TerraMOD17A3HGFV061数据,提供500米分辨率的年度GPP和NPP信息,通过汇总8天GPP净光合作用产品,应用质量控制技术进行数据填充。获取此数据请通过私信或评论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位同学们好,今天和大伙儿分享的是2001~2013年MOD17A3HGF GPP和NPP数据。如果大家有下载处理数据等方面的问题,请私信或评论~

Running, S., M. Zhao.  <i>MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061</i>. 2021, distributed by NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD17A3HGF.061. Accessed 2024-02-21.

1 数据简介

MOD17A3HGF 6.1 版产品以 500 米 (m) 像素分辨率提供有关年度总初级生产和净初级生产(GPP 和 NPP)的信息。年度 Terra 中分辨率成像光谱仪 (MODIS) GPP 和 NPP 源自给定年份所有 8 天 GPP 净光合作用 (PSN) 产品 ( MOD17A2H ) 的总和。PSN 值是 GPP 和维持呼吸 (MR) 的差值。

MOD17A3HGF 将在每年年底生成,届时全年 8 天的MOD15A2H均可用。因此,缺口填充的 MOD17A3HGF 是改进的 MOD17,它根据每个像素的质量控制 (QC) 标签清除了 8 天叶面积指数和光合有效辐射分数 (LAI/FPAR) 中的低质量输入。如果任何 LAI/FPAR 像素不满足质量筛选标准,则通过线性插值确定其值。然而,用户无法近乎实时地获得 MOD17A3HGF,因为它只会在给定年份年底生成。

2 数据链接

https://lpdaac.usgs.gov/products/mod17a3hgfv061/

3 数据分享

如您需要此数据,请私信或评论

### MOD17A3HGF 数据预处理方法 对于MOD17A3HGF数据预处理,可以采用专门设计用于处理MODIS数据的产品读取、转换以及校正软件工具。具体来说,在ENVI环境中完成从原始产品到可用NPP(净初级生产力)数据的过程涉及多个步骤[^4]。 #### 单位调整 首先需要注意的是理解并统一数据单位。MOD17A3HGF产品的默认单位为`kgC/m²`,而在多数科学研究场景下更常用的是`gC/m²`作为衡量标准。因此需要将原生数值乘以1000来实现单位间的转换。 #### 数据清理 为了去除异常值的影响,在ENVI内置函数BandMath中执行逻辑运算表达式`(b1 ge 30000)*0+(b1 lt 30000)*b1`,这一步骤会把所有超过阈值30,000的像素点设为零,保留低于此界限的有效观测值不变。 #### 应用缩放因子 继续利用BandMath功能实施线性变换操作`0.1*b1`,即对上一步获得的结果进一步缩小十倍,从而最终形成标准化后的NPP栅格图像层。 ```python import numpy as np def preprocess_modis_npp(data_array): """ Preprocesses the raw NPP data from MOD17A3HGF product. Parameters: data_array (numpy.ndarray): Raw NPP data array read from HDF file. Returns: processed_data (numpy.ndarray): Processed and scaled NPP data ready for analysis. """ # Set values greater than or equal to 30000 to zero; keep others unchanged cleaned_data = np.where(data_array >= 30000, 0, data_array) # Apply scaling factor of 0.1 to convert units from kgC/m2 to gC/m2 processed_data = cleaned_data * 0.1 return processed_data ``` 除了上述基于桌面应用程序的操作外,还可以考虑借助Google Earth Engine平台在线处理大规模时空序列遥感影像集合的能力来进行批量自动化作业[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS遥感数据处理应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值