一、动态规划
1.动态规划解题步骤
- 定义子问题
- 写出子问题的递推关系
- 确定DP数组的计算顺序
- 空间优化(可选)
2. 示例:打家劫舍
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。
示例1:
输入:[1,2,3,1]
输出:4
解释:偷窃1号房屋(金额 =1),然后偷窃3号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。
示例2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃Ⅰ号房屋(金额 = 2),偷窃3号房屋(金额 = 9),接着偷窃5号房屋(金额 = 1)。偷窃到的最高金额 = 2 + 9 + 1 - 12 。
代码示例
int rob(vector<int>& nums)
{
int n = nums.size();// 6
if (n <= 0) return 0;
if (n == 1) return nums[0];
vector<int> dp(n, 0);
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < n; ++i)
{
dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[n - 1];
}
int main()
{
vector<int> nums = { 0,2,7,9,3,1 };
cout << rob(nums) << endl;
return 0;
}
运行结果
3.示例:最大子数组和
给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组至少包含一个元素),子数组是数组中的一个连续部分。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1]的和最大,为6 。
示例2:
输入: nums = [1]
输出:1
示例3:
输入: nums =[5,4,-1,7,8]
输出:23
代码(动态数组)
#include<iostream>
#include<string> // C++字符串类型库
#include<string.h> //C字符函数库
#include<cstring> // C字符函数库
#include<vector>
#include<initializer_list>
#include<iomanip>
#include<limits.h>
using namespace std;
int maxSubArray(vector<int>& nums)
{
int len = nums.size();
if (len <= 0) return 0;
vector<int> dp(len, 0);
int ret = INT_MIN;
dp[0] = nums[0];
for (int i = 1; i < len; ++i)
{
if (dp[i - 1] > 0)
{
dp[i] = dp[i - 1] + nums[i];
}
else
{
dp[i] = nums[i];
}
ret = max(dp[i], ret);
}
return ret;
}
int main()
{
vector<int> nums = { -2,1,-3,4,-1,2,1,-5,4 };
int maxv = maxSubArray(nums);
cout << maxv << endl;
return 0;
}
4.最长递增子序列
给你一个整数数组nums ,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。
示例1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是[2,3,7,101],因此长度为4
示例2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例3:
输入: nums = [7,7,7,7,7,7,7]
输出:1
代码示例
int length(vector<int>& nums)
{
int n = nums.size();
if (n <= 0) return 0;
vector<int> dp(n, 0);
for (int i = 0; i < n; ++i)
{
dp[i] = 1;
for (int j = 0; j < i; ++j)
{
if (nums[j] < nums[i])
{
dp[i] = max(dp[i], dp[j] + 1);
}
}
}
return dp[n - 1];
}
int main()
{
vector<int> nums = { 0,9,2,5,3,7,101,18 };
length(nums);
return 0;
}