概率论与数理统计——证明:若随机变量X的分布函数是严格递增的函数,Y等于该分布函数,则Y服从[0,1]上的均匀分布 证明过程 证明过程 设 Y = F X ( x ) Y=F_{X}(x) Y=FX(x) 因为X的分布函数是连续且单调递增的函数,所以它存在一个单调递增的反函数 x = F − 1 ( y ) x=F^{-1}(y) x=F−1(y) 由于X的分布函数的值域为[0,1],因此Y的取值为[0,1]。 所以,当 y < 0 y<0 y<0时 F Y ( y ) =