概率论与数理统计——证明:若随机变量X的分布函数是连续函数且Y等于该分布函数,则Y服从[0,1]上的均匀分布

本文证明了若随机变量X的分布函数FX(x)连续且单调递增,Y=FX(x),则Y服从[0,1]上的均匀分布。通过分析FY(y)的性质,得出Y的密度函数在[0,1]区间内为1,其余为0,从而证明结论。" 126411386,10638859,揭秘:阿里P7级别的技术与能力要求,"['大数据', 'Java', '分布式', '职场和发展']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率论与数理统计——证明:若随机变量X的分布函数是严格递增的函数,Y等于该分布函数,则Y服从[0,1]上的均匀分布

证明过程

Y = F X ( x ) Y=F_{X}(x) Y=FX(x)

因为X的分布函数是连续且单调递增的函数,所以它存在一个单调递增的反函数

x = F − 1 ( y ) x=F^{-1}(y) x=F1(y)

由于X的分布函数的值域为[0,1],因此Y的取值为[0,1]。

所以,当 y < 0 y<0 y<0

F Y ( y ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值