复变函数——一到三章总结

一、复数与复变函数

1 复数及其四则运算

复数的概念

虚数单位i
  对于方程 x 2 = − 1 x^2=-1 x2=1,其在实数集中无解,为了了解方程,引入i,称为虚数单位。对其规定:
  ① i 2 = − 1 i^2=-1 i2=1
  ② i可以与实数在一起按同样的法则进行四则运算。

  虚数单位的特性:
i 1 = i i^1=i i1=i

i 2 = − 1 i^2=-1 i2=1

i 3 = − i i^3=-i i3=i

i 4 = 1 i^4=1 i4=1

. . . . . . ...... ......

i 4 n + 1 = i i^{4n+1}=i i4n+1=i

i 4 n + 2 = − 1 i^{4n+2}=-1 i4n+2=1

i 4 n + 3 = − i i^{4n+3}=-i i4n+3=i

i 4 n + 4 = 1 i^{4n+4}=1 i4n+4=1

复数
  对于任意的两个实数x和y,称z=x+iy或z=x+yi为复数。它与有序数对z=(x,y)一一对应。
  其中x称为z的实部,y称为z的虚部,记作
x = R e ( z ) x=Re(z) x=Re(z)

y = I m ( z ) y=Im(z) y=Im(z)

  当x=0,y≠0时,z=iy称为纯虚数。
  当y=0,z=x+i0可以看作实数x。
  所有复数够成复数集(复数域),用C表示,即
C = { z ∣ z = x + i y , x , y ∈ R } C=\{z|z=x+iy,x,y\in R\} C={ zz=x+iy,x,yR}

为什么要引入复数?
  ①把复数与平面内的点一一对应起来。
  ②使任意实系数一元n次方程存在n个解。
  ③简化三角函数的运算。
  ④用于计算实反常积分。

复数不能比较大小
  两个复数相等,当且仅当它的实部和虚部分别相等。
  复数z等于0,当且仅当它的实部和虚部都为0。
  只有实数可以比较大小,如果不全是实数,那么就不能够比较大小。

  复数不能比较大小的原因
  对于复数i和0,显然,i≠0。
  (1)若i>0,那么i·i>0,即得到-1>0,矛盾。
  (2)若i<0,那么i·i>0·i,同样得到-1>0,矛盾。
  由此,可以得到,复数无法定义大小关系。

共轭复数
  实部相同,虚部绝对值相等而符号相反的两个复数称为共轭复数,记为 z ˉ \bar{z} zˉ,即若 z = x + i y z=x+iy z=x+iy,则 z ˉ = x − i y \bar{z}=x-iy zˉ=xiy

复数的四则运算

  设两个复数为 z 1 = x 1 + i y 1 z_1=x_1+iy_1 z1=x1+iy1 z 2 = x 2 + i y 2 z_2=x_2+iy_2 z2=x2+iy2

  ①和
z 1 ± z 2 = ( x 1 ± x 2 ) + i ( y 1 ± y 2 ) z_1±z_2=(x_1±x_2)+i(y_1±y_2) z1±z2=(x1±x2)+i(y1±y2)

  ②积
z 1 ⋅ z 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 2 y 1 + x 1 y 2 ) z_1·z_2=(x_1x_2-y_1y_2)+i(x_2y_1+x_1y_2) z1z2=(x1x2y1y2)+i(x2y1+x1y2)

  ③商
z 1 z 2 = ( x 1 + i y 1 ) ( x 2 − i y 2 ) ( x 2 + i y 2 ) ( x 2 − i y 2 ) = x 1 x 2 + y 1 y 2 x 2 2 + y 2 2 + i x 2 y 1 − x 1 y 2 x 2 2 + y 2 2 \frac{z_1}{z_2}=\frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2} z2z1=(x2+iy2)(x2iy2)(x1+iy1)(x2iy2)=x22+y22x1x2+y1y2+ix22+y22x2y1x1y2

复数的四则运算性质
  ①交换律
z 1 + z 2 = z 2 + z 1 z_1+z_2=z_2+z_1 z1+z2=z2+z1

z 1 z 2 = z 2 z 1 z_1z_2=z_2z_1 z1z2=z2z1

  ②结合律
( z 1 + z 2 ) + z 3 = z 1 + ( z 2 + z 3 ) (z_1+z_2)+z_3=z_1+(z_2+z_3) (z1+z2)+z3=z1+(z2+z3)

( z 1 z 2 ) z 3 = z 1 ( z 2 z 3 ) (z_1z_2)z_3=z_1(z_2z_3) (z1z2)z3=z1(z2z3)

  ③分配律
z 1 ( z 2 + z 3 ) = z 1 z 2 + z 1 z 3 z_1(z_2+z_3)=z_1z_2+z_1z_3 z1(z2+z3)=z1z2+z1z3

共轭复数性质
  (1) z ˉ ˉ = z \bar{\bar{z}}=z zˉˉ=z
  (2) z 1 z_1 z1加减(乘除) z 2 z_2 z2的共轭等于 z 1 z_1 z1的共轭加减(乘除) z 2 z_2 z2的共轭
  (3) z ⋅ z ˉ = ∣ z ∣ 2 = ∣ z 2 ∣ z·\bar{z}=|z|^2=|z^2| zzˉ=z2=z2
  (4) z + z ˉ = 2 R e ( z ) , z − ( ˉ z ) = 2 i I m ( z ) z+\bar{z}=2Re(z),z-\bar(z)=2iIm(z) z+zˉ=2Re(z),z(ˉz)=2iIm(z),即 x = z + z ˉ 2 , y = z − z ˉ 2 i x=\frac{z+\bar{z}}{2},y=\frac{z-\bar{z}}{2i} x=2z+zˉ,y=2izzˉ

2 复数的表示

复数的点表示

  复数域 C → R 2 C \rightarrow R^2 CR2也就是 z = x + i y → z : ( x , y ) z=x+iy \rightarrow z:(x,y) z=x+iyz:(x,y)

复平面
  用建立了直角坐标系的平面来表示复数的平面称为复平面。
  横轴:实轴或x轴
  纵轴:虚轴或y轴
  复数z=x+iy可以用复平面上的点P(x,y)表示。

复数的向量表示

复数的模(绝对值)
  复数z=x+iy也可以用复平面上的向量 O P ⃗ \vec{OP} OP 表示。向量的长度称为z的模或绝对值,记为
∣ z ∣ = r = x 2 + y 2 |z|=r=\sqrt{x^2+y^2} z=r=x2+y2

  显然, ∣ x ∣ ≤ ∣ z ∣ |x|≤|z| xz ∣ y ∣ ≤ ∣ z ∣ |y|≤|z| yz ∣ x ∣ + ∣ y ∣ ≥ ∣ z ∣ |x|+|y|≥|z| x+yz

复数的辐角
  称以正实轴为始边,以向量 O P ⃗ \vec{OP} OP 为终边的角的弧度数θ为复数z的辐角(z≠0),记作Argz=θ
  (1)任何一个复数z≠0有无穷多个辐角。
  (2)z≠0时, t a n ( A r g z ) = y x tan(Argz)=\frac{y}{x} tan(Argz)=xy
  (3)z=0时,辐角无意义。

辐角主值
  在z(≠0)的辐角中,把满足 ( − π , π ] (-\pi,\pi] (π,π]的辐角称为Argz的主值,记作
θ 0 = a r g z \theta_0=argz θ0=argz

  与辐角的关系:
A r g z = a r g z + 2 k π , k ∈ Z Argz=argz+2k\pi,k\in Z Argz=argz+2kπ,kZ

θ 0 = a r g z = { a r c t a n y x x > 0 a r c t a n y x ± π x < 0 , y ≠ 0 π x < 0 , y = 0 ± π 2 x = 0 , y ≠ 0 \theta_0=argz=\begin{cases}arctan\frac{y}{x}&x>0\\arctan\frac{y}{x}±\pi&x<0,y≠0\\\pi&x<0,y=0\\±\frac{\pi}{2}&x=0,y≠0\end{cases} θ0=argz=arctanxyarctanxy±ππ±2πx>0x<0,y=0x<0,y=0x=0,y=0

  辐角主值与辐角在第二三象限的值需要相加减 π \pi π,是因为arctan的函数值的范围仅为 − π 2 -\frac{\pi}{2} 2π π 2 \frac{\pi}{2} 2π

复数的三角表示与指数表示

复数的三角表示
z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ)

  其中,复数为 z = x + i y z=x+iy z=x+iy,这是由直角坐标和极坐标的关系,即 x = r c o s θ x=rcos\theta x=rcosθ y = r s i n θ y=rsin\theta y=rsinθ得到的。

复数的指数表示
z = r e i θ z=re^{i\theta} z=reiθ

  这是根据欧拉公式: e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ得到的,因此

z = r ( c o s θ + i s i n θ ) = r e i θ z=r(cos\theta+isin\theta)=re^{i\theta} z=r(cosθ+isinθ)=reiθ

  在工程上, z = r ∠ θ z=r∠\theta z=rθ

欧拉公式
e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ

  取 θ = π \theta=\pi θ=π,则
e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

  它被称为“上帝创造的公式”。
  根据欧拉公式,还可以得到
c o s θ = e i θ + e − i θ 2 cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} cosθ=2eiθ+eiθ

s i n θ = e i θ − e − i θ 2 j sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2j} sinθ=2jeiθeiθ

3 复数乘幂与方根

复数的乘积与商

  设 z 1 = x 1 + i y 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) = r 1 e i θ 1 z_1=x_1+iy_1=r_1(cos\theta_1+isin\theta_1)=r_1e^{i\theta_1} z1=x1+iy1=r1(cosθ1+isinθ1)=r1eiθ1 z 2 = x 2 + i y 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) = r 2 e i θ 2 z_2=x_2+iy_2=r_2(cos\theta_2+isin\theta_2)=r_2e^{i\theta_2} z2=x2+iy2=r2(cosθ2+isinθ2)=r2eiθ2

两复数的加减
z 1 ± z 2 = ( x 1 ± x 2 ) + i ( y 1 ± y 2 ) z_1±z_2=(x_1±x_2)+i(y_1±y_2) z1±z2=(x1±x2)+i(y1±y2)

  复平面上加与减运算满足平行四边形法则,则有复数三角形不等式

∣ z 1 ∣ + ∣ z 2 ∣ ≥ ∣ z 1 + z 2 ∣ |z_1|+|z_2|≥|z_1+z_2| z1+z2z1+z2

∣ ∣ z 1 ∣ − ∣ z 2 ∣ ∣ ≤ ∣ z 1 − z 2 ∣ ||z_1|-|z_2||≤|z_1-z_2| z1z2z1z2

两复数的积
z 1 ⋅ z 2 = r 1 ( c o s θ 1 + i s i n θ 1 ) r 2 ( c o s θ 2 + i s i n θ 2 ) = r 1 r 2 ( c o s θ 1 c o s θ 2 − s i n θ 1 s i n θ 2 + i ( c o s θ 1 s i n θ 2 + c o s θ 2 s i n θ 1 ) ) = r 1 r 2 ( c o s ( θ 1 + θ 2 ) + i s i n ( θ 1 + θ 2 ) ) = r 1 r 2 e i ( θ 1 + θ 2 ) z_1·z_2=r_1(cos\theta_1+isin\theta_1)r_2(cos\theta_2+isin\theta_2)=r_1r_2(cos\theta_1cos\theta_2-sin\theta_1sin\theta_2+i(cos\theta_1sin\theta_2+cos\theta_2sin\theta_1))=r_1r_2(cos(\theta_1+\theta_2)+isin(\theta_1+\theta_2))=r_1r_2e^{i(\theta_1+\theta_2)} z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2(cosθ1cosθ2sinθ1sinθ2+i(cosθ1sinθ2+cosθ2sinθ1))=r1r2(cos(θ1+θ2)+isin(θ1+θ2))=r1r2ei(θ1+θ2)

  乘积的模等于模的乘积。
  乘积的辐角等于辐角的和。
  了解复数乘积的几何意义。

A r g ( z 1 z 2 ) = A r g z 1 + A r g z 2 Arg(z_1z_2)=Argz_1+Argz_2 Arg(z1z2)=Argz1+Argz2

  上面的等式表示,两端可取值的全体是相同的。
  一般情况下
a r g ( z 1 z 2 ) ≠ a r g z 1 + a r g z 2 arg(z_1z_2)≠argz_1+argz_2 arg(z1z2)=argz1+argz2

两复数的商
  推导过程可以使用上面的结论
  对 z 2 ≠ 0 z_2≠0 z2=0
z 1 = z 1 z 2 z 2 z_1=\frac{z_1}{z_2}z_2 z1=z2

  • 12
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值