-
神经网络
① 神经网络训练的就是函数系数𝐾𝑘与d。 -
线性拉平
import torch
import torchvision
from torch import nn
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)
for data in dataloader:
imgs, targets = data
print(imgs.shape)
output = torch.reshape(imgs,(1,1,1,-1))
print(output.shape)
- 线性层
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.linear1 = Linear(196608,10)
def forward(self, input):
output = self.linear1(input)
return output
tudui = Tudui()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
print(imgs.shape)
writer.add_images("input", imgs, step)
output = torch.reshape(imgs,(1,1,1,-1)) # 方法一:拉平
print(output.shape)
output = tudui(output)
print(output.shape)
writer.add_images("output", output, step)
step = step + 1
- 拉平,展开为一维
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.linear1 = Linear(196608,10)
def forward(self, input):
output = self.linear1(input)
return output
tudui = Tudui()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
print(imgs.shape)
writer.add_images("input", imgs, step)
output = torch.flatten(imgs) # 方法二:拉平。展开为一维
print(output.shape)
output = tudui(output)
print(output.shape)
step = step + 1