在假设检验中,拒绝原假设意味着( )。
A.原假设肯定是错误的
B.有充分证据证明原假设是正确的
C.有充分证据证明原假设是错误的
D.有可能犯第一类错误
E.有可能犯第二类错误
答案:C 和 D
详细大白话讲解:
假设检验就像一场法庭审判:原假设 H0H_0H0(例如“被告无罪”)是被默认成立的,需要证据(样本数据)来反驳。拒绝原假设相当于“判定被告有罪”,但这一结论可能正确也可能错误。
- 拒绝原假设的含义:
-
有充分证据证明原假设是错误的(C):
就像法庭上基于证据(如DNA、目击证人)判定被告有罪,统计上基于样本数据(如P值小于显著性水平 α\alphaα)拒绝 H0H_0H0,说明当前证据强烈反对原假设。
注意:这不是100%绝对,但统计上“显著”。 -
有可能犯第一类错误(D):
第一类错误是“冤枉好人”——原假设实际正确(被告无罪),但被错误拒绝(判有罪)。显著性水平 α\alphaα(如0.05)就是犯第一类错误的概率。拒绝 H0H_0H0 时,可能正好踩中了这个小概率错误。
-
为什么其他选项不对?
-
A(原假设肯定是错误的):
假设检验基于概率,拒绝 H0H_0H0 是证据强,但不是绝对。例如,α=0.05\alpha=0.05α=0.05 时,仍有5%可能错误拒绝(第一类错误)。 -
B(有充分证据证明原假设是正确的):
假设检验的逻辑是“反证法”,只能拒绝或无法拒绝 H0H_0H0,但从未“接受”或证明 H0H_0H0 正确。无法拒绝 H0H_0H0 时,只表示证据不足,不代表 H0H_0H0 正确(可能样本小或方差大)。 -
E(有可能犯第二类错误):
第二类错误是“放过坏人”——原假设实际错误,但未被拒绝(判无罪)。拒绝 H0H_0H0 时,第二类错误(β\betaβ)根本不会发生(因为已经拒绝了),所以不可能犯第二类错误。
故事类比:
假设质检员检验一批灯泡(原假设 H0H_0H0:灯泡寿命≥1000小时)。他抽样测试后,若发现样本寿命远低于1000小时(P值很小),就拒绝 H0H_0H0(认定灯泡不合格)。
- 这表示有充分证据证明灯泡确实不合格(C)。
- 但可能这批灯泡实际合格(第一类错误),只是抽到了差样本(D)。
而如果质检员没拒绝 H0H_0H0,可能灯泡实际不合格(第二类错误,E),但这里已经拒绝了,所以E无关。
结论:拒绝原假设时,说明有充分证据反对它(C),但可能犯第一类错误(D)。
8430

被折叠的 条评论
为什么被折叠?



