python 面试必问,不会真的要打脸~
01.可迭代对象
在 python 中我们可以通过 for
循环来遍历列表,元组,这种遍历我们称为迭代(Iteration)。在 python 中凡是可以通过 for ... in
进行迭代的对象,它就是可迭代对象。
1.1 如何判断一个对象是可迭代对象
from collections.abs import Iterable
isinstance('abc', Iterable)
1.2 迭代协议
python 中对象要提供迭代支持,必须定义一个 __iter__
方法,这个方法返回一个迭代器对象。
02.迭代器(Iterator)
前面我们讲过可以通过 for
循环迭代的对象称为可迭代对象:Iteralbe
。
在底层 for
循环是先通过内置函数 iter()
将可迭代对象转换成一个迭代器,然后将其传入 next()
函数调用并返回下一个值,直到最后抛出 StopIteration
错误表示无法继续返回下一个值了。
In [8]: ls = [1,2,3]
In [9]: ls = iter(ls)
In [10]: ls
Out[10]: <list_iterator at 0x225a33d8bb0>
In [11]: next(ls)
Out[11]: 1
In [12]: next(ls)
Out[12]: 2
In [13]: next(ls)
Out[13]: 3
In [14]: next(ls)
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-14-2a26c7e4d7fa> in <module>
----> 1 next(ls)
StopIteration:
所以可以被 next()
函数调用并不断返回下一个值的对象称为迭代器:Interator
。
2.1 如何判断一个对象是迭代器对象
from collections.abc import Iterator
ls = [1,2,3]
ls = iter(ls)
isinstance(ls, Iterator)
2.2 迭代器协议
迭代器对象自身需要支持以下两个方法,它们共同组成了迭代器协议:
-
iterator.__inter__()
返回迭代器对象本身。
-
iterator.__next__()
从对象中返回下一个值。如果没有可返回值,则引发
StopIteration
异常。
2.3 迭代器的作用
python 中迭代器对象表示的是一个数据流,迭代器对象可以被 next()
函数不断调用返回下一个数据,直到没有数据抛出 StopIteration
异常。
这个数据流像一个列表,但我们却不能提前知道它的长度,只能不断通过 next()
函数实现按需计算下一个数据,迭代器的计算是惰性的,只有在需要返回下一个数据时,它才会计算。
迭代器可以表示一个无限大的数据流,例如全体自然数,而使用 list 是永远不可能存储全体自然数的。
03.生成器
在 python 中创建元素数量巨大的列表不仅占用很大的内存,如果仅仅只需要访问某几个元素,那其他绝大多数元素占用的空间就白白浪费了。
所以,如果列表中的元素可以按照某种算法推算出来,那如果可以在循环的过程中不断推算出后续的元素,就可以不用创建完整的列表,从而节省大量的空间。
在 python 中,这种一边循环一边计算的机制,称为生成器(generator)
要创建一个 generator
,很多种方法。
3.1、生成器表达式
最简单的方式是把列表生成式的 []
改成 ()
,就创建了一个 generator
。
In [16]: g = (i**2 for i in range(10))
In [17]: g
Out[17]: <generator object <genexpr> at 0x00000225A239A510>
In [18]: next(g)
Out[18]: 0
In [19]: next(g)
Out[19]: 1
生成器也是迭代器,当然也可以通过 for
循环进行迭代。
In [20]: for item in (g):
...: print(item)
...:
4
9
16
25
36
49
64
81
3.2、生成器函数
如果推算的算法比较复杂,用生成器表达式无法实现的时候,还可以通过函数来 实现。
比如,斐波拉契数列,除第一个和第二数外,任意一个数都等于前两个数的和:
0,1,1,2,3,5,8,...
def fib(n):
a, b = 0, 1
for _ in range(n):
print(a)
a,b = b, a+b
fib(10)
0
1
1
2
3
5
8
13
21
34
但是函数 fib
虽然包含了推算斐波拉契数列的算法规则,但是却是一次性算出了所有的值,和 generator
的逻辑很像。要将 fib
函数变成 generator
,只需要将 print(a)
改成 yield a
就可以了:
In [24]: def fib(n):
...: a, b = 0, 1
...: for _ in range(n):
...: yield a
...: a,b = b, a+b
...: g = fib(10)
...: g
Out[24]: <generator object fib at 0x00000225A3D4E9E0>
In [25]: next(g)
Out[25]: 0
In [26]: next(g)
Out[26]: 1
In [27]: for item in g:
...: print(item)
...:
1
2
3
5
8
13
21
34
这就是定义 generator
的另一种方法。如果一个函数的定义中使用了 yield
关键字,那么这个函数就不再是一个普通的函数,而是一个生成器这时候调用函数返回的就是一个生成器对象
行动吧,在路上总比一直观望的要好,未来的你肯定会感 谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入扣群: 320231853,里面有各种软件测试+开发资料和技术可以一起交流学习哦。
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!