基于官方Github中的requirement:
YOLOv10的requirement.txt:
torch==2.0.1
torchvision==0.15.2
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxslim==0.1.31
onnxruntime-gpu==1.18.0
gradio==4.31.5
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3
YOLOv7的requirement.txt:
# Usage: pip install -r requirements.txt
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5,<1.24.0
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0,!=1.12.0
torchvision>=0.8.1,!=0.13.0
tqdm>=4.41.0
protobuf<4.21.3# Logging -------------------------------------
tensorboard>=2.4.1
# wandb# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0# Export --------------------------------------
# coremltools>=4.1 # CoreML export
# onnx>=1.9.0 # ONNX export
# onnx-simplifier>=0.3.6 # ONNX simplifier
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TFLite export
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev # OpenVINO export# Extras --------------------------------------
ipython # interactive notebook
psutil # system utilization
thop # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0 # COCO mAP
# roboflow
YOLOv3的requirement.txt:
scipy==1.4.1
numpy==1.18.4
matplotlib==3.2.1
opencv_python==4.2.0.34
tensorflow_gpu==2.2.0
tqdm==4.46.1
Pillow==8.2.0
h5py==2.10.0
YOLOv10和YOLOv7是pytorch,可以用同样的CUDA版本:
CUDA 11.7
YOLOv3是tensorflow 2.2.0,CUDA版本不一样:
CUDA 10.1
CUDA按默认路径安装的话,就可以在以下路径查看电脑里是否有对应版本的CUDA:
最重要的部分:CUDA的选择使用
三步切换CUDA
①系统变量CUDA_PATH(更改最后一个数字就行,比如从CUDA版本从11.7切换10.1,最后的v11.7就改成v10.1)
②系统变量PATH的子变量...bin和...libnvvp结尾的两个(同样更改最后一个数字就行)
③重启电脑
效果如下
对应nvcc -version内容:
对应nvcc -version内容:
cuDNN去官网下载就行:
cuDNN Archive | NVIDIA Developer
下载列表有CUDA和cuDNN的版本对应关系