YOLOv3, YOLOv7, YOLOv10的CUDA环境及便捷切换方法

基于官方Github中的requirement:

YOLOv10的requirement.txt:

torch==2.0.1
torchvision==0.15.2
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxslim==0.1.31
onnxruntime-gpu==1.18.0
gradio==4.31.5
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3

YOLOv7的requirement.txt:

# Usage: pip install -r requirements.txt

# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5,<1.24.0
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0,!=1.12.0
torchvision>=0.8.1,!=0.13.0
tqdm>=4.41.0
protobuf<4.21.3

# Logging -------------------------------------
tensorboard>=2.4.1
# wandb

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export --------------------------------------
# coremltools>=4.1  # CoreML export
# onnx>=1.9.0  # ONNX export
# onnx-simplifier>=0.3.6  # ONNX simplifier
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TFLite export
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev  # OpenVINO export

# Extras --------------------------------------
ipython  # interactive notebook
psutil  # system utilization
thop  # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0  # COCO mAP
# roboflow
 

YOLOv3的requirement.txt:

scipy==1.4.1
numpy==1.18.4
matplotlib==3.2.1
opencv_python==4.2.0.34
tensorflow_gpu==2.2.0
tqdm==4.46.1
Pillow==8.2.0
h5py==2.10.0
 

YOLOv10和YOLOv7是pytorch,可以用同样的CUDA版本:

CUDA 11.7

YOLOv3是tensorflow 2.2.0,CUDA版本不一样:

CUDA 10.1

CUDA按默认路径安装的话,就可以在以下路径查看电脑里是否有对应版本的CUDA:

最重要的部分:CUDA的选择使用

三步切换CUDA

①系统变量CUDA_PATH(更改最后一个数字就行,比如从CUDA版本从11.7切换10.1,最后的v11.7就改成v10.1)

②系统变量PATH的子变量...bin和...libnvvp结尾的两个(同样更改最后一个数字就行)

③重启电脑

效果如下

对应nvcc -version内容:


对应nvcc -version内容:

cuDNN去官网下载就行:

cuDNN Archive | NVIDIA Developer

下载列表有CUDA和cuDNN的版本对应关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值