算法训练 | 动态规划Part1 | 509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯

目录

509. 斐波那契数

动态规划法

70. 爬楼梯

动态规划法

746. 使用最小花费爬楼梯

动态规划法


509. 斐波那契数

动态规划法
  • 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

  • 解题思路

    • 用动态规划五部曲来做,加深动态规划理解

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i]

    • 确定递推公式: dp[i] = dp[i - 1] + dp[i - 2];

    • dp数组如何初始化:dp[0] = 0; dp[1] = 1;

    • 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

    • 举例推导dp数组:按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

  • 代码一:动态规划

// 时间复杂度:O(n)
// 空间复杂度:O(n)
class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        vector<int> dp(N + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[N];
    }
};

70. 爬楼梯

动态规划法
  • 解题思路

    • 爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]: 爬到第i层楼梯,有dp[i]种方法

    • 确定递推公式:从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。所以dp[i] = dp[i - 1] + dp[i - 2] 。

    • dp数组如何初始化:再回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法。  那么i为0,dp[i]应该是多少呢,题目中说了n是一个正整数,题目根本就没说n有为0的情况。所以本题其实就不应该讨论dp[0]的初始化!不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

    • 确定遍历顺序:从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

    • 举例推导dp数组:如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。此时大家应该发现了,这不就是斐波那契数列么!唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

  • 代码一:动态规划

// 时间复杂度:$O(n)$
// 空间复杂度:$O(n)$
// 版本一
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

746. 使用最小花费爬楼梯

动态规划法
  • 解题思路

    • 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  • 解题步骤

    • 确定dp数组以及下标的含义L使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

    • 确定递推公式:可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

    • dp数组如何初始化:看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。所以初始化 dp[0] = 0,dp[1] = 0;

    • 确定遍历顺序:本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

    • 举例推导dp数组:拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。

  • 代码一:动态规划

// 时间复杂度:O(n)
// 空间复杂度:O(n)
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,针对您的问题,我来讲一下动态规划爬楼梯问题5个台阶的分析方法。 在动态规划中,我们通常会使用一个数组来存储子问题的解,以便后续的子问题可以直接使用已解决的子问题的解,从而避免重复计算。对于爬楼梯问题,我们可以使用一个一维数组来存储到达每个台阶的不同路径数量。 以下是对于5个台阶的分析方法: 1. 递推法:根据题目可知,到达第n个台阶的方法数为到达第n-1和第n-2个台阶的方法数之和,因此可以使用递推的方式来求解。具体实现可以使用一个一维数组dp来存储到达每个台阶的方法数,从dp[0]开始逐个计算,最终返回dp[n]即可。 2. 递归法:类似于递推法,也是通过递归的方式来求解。递归终止条件为到达第0个台阶和第1个台阶的方法数分别为1和1,递归求解到达n-1和n-2个台阶的方法数,最终返回它们之和即可。 3. 记忆化搜索法:在递归法的基础上,加入了记忆化的思想,即在求解每个子问题时,先查看该子问题是否已经计算过,如果已经计算过,则直接返回已有的解。如果没有计算过,则递归求解,并将结果存储到一个数组中,以便后续的子问题可以直接使用已解决的子问题的解。 4. 斐波那契数列法:利用斐波那契数列的递推公式,即f(n)=f(n-1)+f(n-2),来求解爬楼梯问题。具体实现可以使用两个变量f1和f2来存储f(n-1)和f(n-2)的值,然后依次更新它们的值,最终返回f(n)即可。 5. 矩阵快速幂法:在斐波那契数列法的基础上,利用矩阵快速幂的思想,可以将时间复杂度从O(n)降低到O(logn)。具体实现可以将斐波那契数列的递推公式转化为矩阵的形式,然后使用矩阵快速幂的方式来求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值