六、回归与聚类算法 - 逻辑回归与二分类

目录

1、应用场景

2、原理

2.1 输入

2.2 激活函数

3、损失以及优化

3.1 损失

3.2 优化

4、逻辑回归API

5、分类的评估方法

5.1 精确率和召回率

5.2 ROC曲线和AUC指标


  1. 线性回归
  2. 欠拟合与过拟合
  3. 线性回归的改进 - 岭回归
  4. 分类算法:逻辑回归
  5. 模型保存与加载
  6. 无监督学习:K-means算法

1、应用场景

2、原理

2.1 输入

2.2 激活函数

3、损失以及优化

3.1 损失

3.2 优化

4、逻辑回归API

5、分类的评估方法

5.1 精确率和召回率

5.2 ROC曲线和AUC指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值