python+opencv实现台球指示线提取与延长

这篇博客介绍了如何通过Python的OpenCV库和Pyautogui库来实现台球小游戏中的直线指示器。首先,通过Pyautogui库进行屏幕截图,然后将图片转换为HSV格式并设定白色范围进行颜色提取。接着,运用霍夫直线检测方法找到线条,并筛选出特定长度的直线。最后,将这些直线延长并绘制在原始图像上,以便在游戏中作为指示线使用。代码示例详细展示了整个过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.前言
为了学习与了解opencv与图像处理相关的知识,实现台球小游戏的指示线延长。
1.实现
1.屏幕区域截图
先安装pyautogui库,在终端中输入:

pip install pyautogui

利用以下代码实现屏幕截取。region中的前两个变量为起点,后两个参数为截取屏幕的长与宽。

img = pyautogui.screenshot(region=[120, 160, 810, 450])  # x,y,w,h

2.特定颜色提取
为了提取台球桌画面的白色线条,首先需要选取白色的hsv范围,需要将图片转换为hsv格式,mask1中显示得到的hsv筛选结果,使用src显示图片。

 hsv = cv.cvtColor(np.asarray(img), cv.COLOR_BGR2HSV)
 mask1 = cv.inRange(hsv, (0, 0, 221), (0, 15, 255))
 src = cv.cvtColor(np.asarray(img), cv.COLOR_BGR2RGB)

3.霍夫直线检测
使用opencv提供的方法进行霍夫直线检测。具体参数大家可自行查阅资料进行调整。

linesP = cv.HoughLinesP(mask1, 1, np.pi / 180, 10, None, 5, 10)

4.直线筛选
选取出特定长度的线段,再将直线进行延长与绘画。

 if linesP is not None:
        for i in range(0, len(linesP)):
            l = linesP[i][0]
            if (l[2] - l[0] ) is not 0:
                k = (l[3] - l[1] )/ (l[2] - l[0] +0.0001)
                x1=l[0]
                y1=l[1]
                x2=l[2]
                y2=l[3]
                if abs(x1 - x2) + abs(y1 - y2) < 50 and k< 999:
                    xmin = 820
                    xmax = 0
                    for x in range(1, 809):
                        y = k * (x - x1) + y1
                        if y > 0 and y < 449:
                            if x < xmin:
                                xmin = x
                            if x > xmax:
                                xmax = x
					cv.line(src, (xmin, int(k*(xmin-x1)+y1)), (xmax, int(k*(xmax-x1)+y1)), (0, 255, 0), 1, cv.LINE_AA)

2.运行结果
在这里插入图片描述
3.完整代码

import cv2 as cv
import numpy as np
import pyautogui


while 1:
    img = pyautogui.screenshot(region=[120, 160, 810, 450])  # x,y,w,h

    hsv = cv.cvtColor(np.asarray(img), cv.COLOR_BGR2HSV)
    src = cv.cvtColor(np.asarray(img), cv.COLOR_BGR2RGB)
    cv.namedWindow("t", cv.WINDOW_AUTOSIZE)

    mask1 = cv.inRange(hsv, (0, 0, 221), (0, 15, 255))

    linesP = cv.HoughLinesP(mask1, 1, np.pi / 180, 10, None, 5, 10)

    if linesP is not None:
        for i in range(0, len(linesP)):
            l = linesP[i][0]
            if (l[2] - l[0] ) is not 0:
                k = (l[3] - l[1] )/ (l[2] - l[0] +0.0001)
                x1=l[0]
                y1=l[1]
                x2=l[2]
                y2=l[3]
                if abs(x1 - x2) + abs(y1 - y2) < 50 and k< 999:
                    xmin = 820
                    xmax = 0
                    for x in range(1, 809):
                        y = k * (x - x1) + y1
                        if y > 0 and y < 449:
                            if x < xmin:
                                xmin = x
                            if x > xmax:
                                xmax = x
                    cv.line(src, (xmin, int(k * (xmin - x1) + y1)), (xmax, int(k * (xmax - x1) + y1)),
                                        (0, 255, 0), 1, cv.LINE_AA)

    cv.imshow("t", src)
    cv.waitKey(10)

cv.destroyAllWindows()

OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像和视频处理任务设计,广泛应用于学术研究、工业应用以及个人项目中。以下是关于OpenCV的详细介绍: 历史发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及和商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区支持:随着时间的推移,OpenCV吸引了全球众多开发者和研究人员的参,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献和支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、Android和iOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测描述(如SIFT、SURF、ORB等)、物体识别检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理和实时计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改和分发库及其源代码,无需担心版权问题。 架构核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储和操作)、基本的图像和矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像和视频的显示、用户交互(如鼠标事件处理)以及简单的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式和捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)描述符计算、特征匹配对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入和运行预训练的深度学习模型,如卷积神经网络(CNN)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值