前言:我的pycharm是专业版的,云服务器租的是autodl,代码是github上下载的。
恒源云的使用与autodl差不多,需要恒源云使用教程的客官请移步至跑深度学习好用的服务器推荐(附带在pycharm中使用的详细过程~)恒源云
1、租云服务器(autodl)
云服务器租赁地址
随便选择一台服务器点击“4卡可租”
点击“立即创建”选择自己需要的pytorch版本等信息
选择好了点击“立即创建”
等待…
可以了
2、打开pycharm
(2)打开pycharm点击File
(2)点击settings…进入如下界面:
(3)点击Add interpreter → On SLL,进入如下界面
(4)去租的云服务器那里复制登录指令→填写到pycharm的ssh里
以这个为例
ssh -p 13305 root@connect.wrstb.seetdcloud.com
HOST:connect.wrstb.seetdcloud.com
PORT:13305
USERNAME:root
(4)填完之后点击next→去复制登录的密码,填上。
点击“next”
第一行的路径可以和我一样填,第二行的路径默认就好(就是把你的项目放在了服务器的那个文件),点击create
(5)点击apply,完成了远程服务器的配置。
3、使用服务器跑程序的过程。
(1)从github上下载的程序一般会有如下文件,打开他
(2)在云服务器上安装他所需要的包
打开服务器上的命令窗口,操作方式如图下蓝色方式:
如上图就是打开了
(2)打开服务器上的咱的项目
cd..(打开root文件夹)
ls(查看当前层的目录)
cd tmp
cd pycharm_project_22
(3)安包
pip install -r requirements.txt
如果你下载的项目里没有requirements.txt,文件,那其实可以需要啥安啥包了
pip install opencv(类似这种的)
安好了就可以运行程序了,以这个README.md文件中训练模型为例
直接粘贴CUDA_VISIBLE_DEVICES=<gpu_id> python train.py --content_dir <content_dir> --style_dir <style_dir>,按照自己的需求需改数据集的地址,和gpu_id号。
将修改后的命令粘贴到命令行就可以了
CUDA_VISIBLE_DEVICES=0 python train.py --content_dir input/content --style_dir input/style