给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb
,其中Ca
是A的列数,Rb
是B的行数。
输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
#include<stdio.h>
int main() {
int ra, ca, rb, cb;
scanf("%d %d", &ra, &ca);
int a[ra * ca]; // 矩阵A
for(int i = 0; i < ra * ca; i++) {
scanf("%d", &a[i]);
}
scanf("%d %d", &rb, &cb);
if(ca != rb) { // 判断能否相乘
printf("Error: %d != %d",ca,rb);
return 0;
}
int b[rb * cb]; // 矩阵B
for(int i = 0; i < rb * cb; i++) {
scanf("%d", &b[i]);
}
// 计算乘积矩阵C
int c[ra * cb];
for(int i = 0; i < ra; i++) {
for(int j = 0; j < cb; j++) {
int sum = 0;
for(int k = 0; k < ca; k++) {
sum += a[i * ca + k] * b[k * cb + j];
}
c[i * cb + j] = sum;
}
}
// 输出乘积矩阵C
printf("%d %d\n", ra, cb);
for(int i = 0; i < ra; i++) {
for(int j = 0; j < cb; j++) {
printf("%d", c[i * cb + j]);
if(j < cb - 1) printf(" "); // 输出元素之间的空格
}
printf("\n"); // 输出换行符
}
return 0;
}