L1-048 矩阵A乘以B

本文介绍了如何在C语言中检查矩阵A和B的规模是否匹配,然后计算并输出它们的乘积矩阵。如果规模不匹配,则输出错误信息。
摘要由CSDN通过智能技术生成

给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra​行、Ca​列,B有Rb​行、Cb​列,则只有Ca​与Rb​相等时,两个矩阵才能相乘。

输入格式:

输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。

输出格式:

若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。

输入样例1:

2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8

输出样例1:

2 4
20 22 24 16
53 58 63 28

输入样例2:

3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72

输出样例2:

Error: 2 != 3
#include<stdio.h>
int main() {
    int ra, ca, rb, cb;
    scanf("%d %d", &ra, &ca);
    int a[ra * ca]; // 矩阵A
    for(int i = 0; i < ra * ca; i++) {
        scanf("%d", &a[i]);
    }   
    scanf("%d %d", &rb, &cb);
    if(ca != rb) { // 判断能否相乘
        printf("Error: %d != %d",ca,rb);
        return 0;
    }    
    int b[rb * cb]; // 矩阵B
    for(int i = 0; i < rb * cb; i++) {
        scanf("%d", &b[i]);
    }   
    // 计算乘积矩阵C
    int c[ra * cb];
    for(int i = 0; i < ra; i++) {
        for(int j = 0; j < cb; j++) {
            int sum = 0;
            for(int k = 0; k < ca; k++) {
                sum += a[i * ca + k] * b[k * cb + j];
            }
            c[i * cb + j] = sum;
        }
    }    
 // 输出乘积矩阵C
    printf("%d %d\n", ra, cb);
    for(int i = 0; i < ra; i++) {
        for(int j = 0; j < cb; j++) {
            printf("%d", c[i * cb + j]);
            if(j < cb - 1) printf(" "); // 输出元素之间的空格
        }
        printf("\n"); // 输出换行符
    }
    return 0;
}

 

### 回答1: Java中矩阵a乘以b的代码如下: ```java public static int[][] matrixMultiply(int[][] a, int[][] b) { int m = a.length; int n = a[0].length; int p = b[0].length; int[][] c = new int[m][p]; for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { for (int k = 0; k < n; k++) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } ``` 其中,a和b分别是两个矩阵,返回值为矩阵c,即a乘以b的结果。 ### 回答2: 在Java中,要实现矩阵a乘以矩阵b的操作,可以依次遍历矩阵a的每一行和矩阵b的每一列,通过内积的方式计算得到结果矩阵。 首先,需要确认矩阵a和矩阵b的尺寸是否满足矩阵相乘的条件,即矩阵a的列数等于矩阵b的行数。如果不满足,无法进行矩阵相乘操作。 接下来,我们可以创建一个新的结果矩阵,其行数为矩阵a的行数,列数为矩阵b的列数。然后使用两层循环,外层循环遍历矩阵a的每一行,内层循环遍历矩阵b的每一列。 在每一次循环中,我们可以定义一个临时变量sum,用于保存计算的结果。内层循环中,通过遍历矩阵a的当前行的每个元素以及矩阵b的当前列的每个元素,并将它们相乘,然后将结果累加到sum中。 内层循环结束后,将sum的值赋给结果矩阵的对应位置,即结果矩阵的当前行和当前列的位置。外层循环结束后,结果矩阵即为所求的矩阵a乘以矩阵b的结果。 具体的Java代码实现如下: ```java public class MatrixMultiplication { public static int[][] multiply(int[][] a, int[][] b) { int rowsA = a.length; int colsA = a[0].length; int rowsB = b.length; int colsB = b[0].length; if (colsA != rowsB) { throw new IllegalArgumentException("Dimensions of matrices are not valid for multiplication."); } int[][] result = new int[rowsA][colsB]; for (int i = 0; i < rowsA; i++) { for (int j = 0; j < colsB; j++) { int sum = 0; for (int k = 0; k < colsA; k++) { sum += a[i][k] * b[k][j]; } result[i][j] = sum; } } return result; } public static void main(String[] args) { // 例子:计算2x2矩阵a乘以2x2矩阵b的结果 int[][] a = {{1, 2}, {3, 4}}; int[][] b = {{5, 6}, {7, 8}}; int[][] result = multiply(a, b); // 输出结果矩阵 for (int i = 0; i < result.length; i++) { for (int j = 0; j < result[0].length; j++) { System.out.print(result[i][j] + " "); } System.out.println(); } } } ``` 以上是一个简单的矩阵相乘算法的Java实现。需要注意的是,矩阵相乘操作的时间复杂度为O(n^3),其中n为矩阵的规模。所以在实际应用中,对于较大的矩阵,可能需要考虑更优化的算法或并行计算来提高性能。 ### 回答3: 在Java中,可以使用嵌套循环来实现矩阵a乘以矩阵b的操作。假设矩阵a的行数为m,列数为n,矩阵b的行数为n,列数为p,那么矩阵a乘以矩阵b的结果将是一个m行p列的矩阵。 首先,我们需要创建一个m行p列的结果矩阵c来存储计算得到的结果。然后,通过嵌套循环遍历a的每一行和b的每一列,并对相应位置上的元素进行计算。 具体的算法如下: 1. 创建m行p列的结果矩阵c,其中每个元素初始化为0。 2. 循环i从0到m-1,表示矩阵a的每一行。 - 循环j从0到p-1,表示矩阵b的每一列。 - 循环k从0到n-1,表示矩阵a的每一列和矩阵b的每一行。 - c[i][j] += a[i][k] * b[k][j]。 实际代码实现如下: ```java public class MatrixMultiplication { public static int[][] multiply(int[][] a, int[][] b) { int m = a.length; int n = a[0].length; int p = b[0].length; int[][] c = new int[m][p]; for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { for (int k = 0; k < n; k++) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } } ``` 这样,我们就实现了矩阵a乘以矩阵b的操作。调用`multiply(a, b)`方法,传入矩阵a和b作为参数,即可得到结果矩阵c。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值