取Dataset子集(pytorch)

取Dataset子集--pytorch

1. why

我们在调试深度学习代码时,常常会遇到数据集太大,导致调试浪费时间的情况,这种情况下,将数据集中的一个子集拿出来用于调试代码,调试成功在用完整的数据集运行代码成为一个可行的方案。

2. how

pytorch中Torch.utils.data.Subset()函数提供了一个简便的方式,函数如下,indices表示取子集中样本在dataset中的序号。

在这里插入图片描述
indices可以由以下的形式输入:

indices = range(0, 10)    # or
indices = [x for x in range(10)]

3. example

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainset = torch.utils.data.Subset(trainset,[0,1,2,3,4,5,6,7,8,9,10,11])
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testset = torch.utils.data.Subset(testset,[1,2,3,4])
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值