PINN解偏微分方程实例5--Diffusion,Burgers,Allen–Cahn方程和反问题

  代码:可以在我的工坊获得。
  视频:在b站可以观看。

  本文使用 PINN 求解了三个具体的偏微分方程正问题和一个反问题,正问题包括Diffusion, Burgers, Allen–Cahn方程,反问题的代码以burger方程为例。
  本文展示了每个方程的数值解,真解和误差图,具体如下。

一、正问题

1. Diffusion equation

一维扩散方程:
∂ u ∂ t = ∂ 2 u ∂ x 2 + e − t ( − sin ⁡ ( π x ) + π 2 sin ⁡ ( π x ) ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( x , 0 ) = sin ⁡ ( π x ) u ( − 1 , t ) = u ( 1 , t ) = 0 \begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array} tu=x22u+et(sin(πx)+π2sin(πx)),x[1,1],t[0,1]u(x,0)=sin(πx)u(1,t)=u(1,t)=0
其中 u u u 是扩散物质的浓度。精确解是 u ( x , t ) = s i n ( π x ) e − t u(x,t)=sin(\pi x)e^{-t} u(x,t)=sin(πx)et 表示。

  1. PINN解
    PINN解

  2. 真实解
    请添加图片描述

  3. 误差
    请添加图片描述

2. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。在本文中, ν ν ν 设为 0.01 / π 0.01/\pi 0.01/π

  1. PINN解
    请添加图片描述
  2. 真实解
    请添加图片描述
  3. 误差
    请添加图片描述

3. Allen–Cahn equation

Allen–Cahn方程的形式如下:
∂ u ∂ t = D ∂ 2 u ∂ x 2 + 5 ( u − u 3 ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = x 2 cos ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = − 1 , \begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array} tu=Dx22u+5(uu3),x[1,1],t[0,1],u(x,0)=x2cos(πx),u(1,t)=u(1,t)=1,
其中,扩散系数 D = 0.001 D=0.001 D=0.001 .

  1. PINN解
    请添加图片描述
  2. 真实解
    请添加图片描述
  3. 误差
    请添加图片描述

二、反问题

1. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度( ν ν ν 0.01 / π 0.01/\pi 0.01/π)。
  这里假设 v v v 未知,我们同时求解方程的解和 v v v 的值。

在这里插入图片描述

  1. 随着迭代, v v v L 2 L_2 L2 相对误差变化图。
    请添加图片描述
  2. PINN解
    请添加图片描述
  3. 真解

请添加图片描述
4. 误差
请添加图片描述

三. 代码目录

本博客所有代码和图片可以在我的工坊获得。

在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值