tool
文章平均质量分 55
筱筱西雨
一个不知名菜鸟
展开
-
foxmail登录不了hotmail的解决办法
由于hotmail的信息安全保护,9.16号就在foxmail登录不了,因为习惯了foxmail,且微软改了验证方式,换要他们的客户端才行,就感觉好麻烦。账号管理里面删除之前的账号,新建账号,选择“Miscosoft 365 国际版”,然后输入账号密码,然后同意协议,这个问题就解决了。原创 2024-09-29 18:07:15 · 1693 阅读 · 0 评论 -
windows更新错误0x80070643的懒人解决方法
但是,MediaCreationTool只有系统升级修复功能,并不能解锁Bitlocker。笔主因为电脑指纹用不了,就感觉是windows需要更新了,结果刚去windows更新,就出现错误0x80070643,遂查阅资料,费了2个小时终于解决,电脑指纹终于能用了。这个是系统分盘,尝试了以后,发现我的磁盘并不能压缩,于是只能采取最笨的方法,重装系统。若是需要保留个人文件和应用,不改变系统版本,通常如下图默认即可。若是需要设置,建议点击“更改保留的内容”,进行设置。之后将无法正常使用电脑,请做好相关准备。原创 2024-06-24 14:37:49 · 1321 阅读 · 0 评论 -
使用Zotero自定义参考文献格式的教程
众说周知,zotero有自带的添加文献的方式,主要流程如下图但是有的参考文献格式在zotero里面是没有的,因此需要自己找cls文件或者自己编写cls文件。原创 2024-05-07 00:11:49 · 3407 阅读 · 0 评论 -
pytorch调用多个gpu训练,手动分配gpu以及指定gpu训练模型的流程以及示例
当使用上面的这个命令时,PyTorch 会检查系统是否有可用的 CUDA 支持的 GPU。如果有,它将选择默认的 GPU(通常是第一块,即 “cuda:0”)。这意味着,即使系统中有多块 GPU,这条命令也只会指向默认的一块。torch.device(“cuda” if torch.cuda.is_available() else “cpu”) 这个命令在多 GPU 系统中是有效的,但它默认只指向一块 GPU(通常是 “cuda:0”)。要在多 GPU 系统中高效地利用所有 GPU,需要采用更复杂的设置。原创 2024-02-02 00:24:42 · 7120 阅读 · 0 评论 -
pytorch调用gpu训练的流程以及示例
首先需要确保系统上安装了CUDA支持的NVIDIA GPU和相应的驱动程序。原创 2024-02-01 23:56:36 · 1252 阅读 · 0 评论 -
docker导出conda环境的流程
在这个示例中,替换 your-env-name 为 Conda 环境名称,your-image-name 为想要的 Docker 镜像名称。这将创建一个包含 Conda 环境的 Docker 镜像,可以在任何支持 Docker 的机器上运行它。在 Dockerfile 所在的目录运行 docker build -t your-image-name . 来构建镜像。要在 Docker 中导出 Conda 环境,需要创建一个 Docker 镜像,该镜像包含 Conda 环境。原创 2024-01-31 23:54:42 · 764 阅读 · 0 评论 -
colab使用自己数据集进行模型训练的方法汇总
在 Google Colab 上使用自己的数据集进行模型训练。Colab 允许您通过多种方式上传数据,包括直接从本地计算机上传、从 Google Drive 加载或通过网络链接下载,从github导入等。原创 2024-01-30 01:01:27 · 1030 阅读 · 0 评论 -
Linux 系统导出Conda 环境到 Windows 系统的流程
连接成功后,使用 put /path/to/environment.yml /path/to/destination 命令将文件上传到目标系统。其中 /path/to/environment.yml 是源系统上文件的路径,username 是在目标系统的用户名,windows_host 是目标系统的主机名或IP地址,/path/to/destination 是目标系统上文件的目的路径。这就是本地 IP 地址。:创建环境后,在 Windows 系统上激活环境并进行测试,以确保所有必要的包都按预期工作。原创 2024-01-30 04:00:00 · 2012 阅读 · 0 评论 -
本地conda环境导入到linux系统里的流程
其中path/to/environment.yml是环境文件在本地计算机上的路径,user@linuxhost是导入Linux系统的用户名和地址,/path/to/destination是在Linux系统上的目标路径。如果没有,需要先安装conda。将激活的环境(your_env_name是环境名称),并导出环境的详细信息到一个名为environment.yml的文件中。这将根据environment.yml文件中的规范,在Linux系统上创建相同的conda环境。:首先在本地计算机上导出conda环境。原创 2024-01-29 23:34:17 · 615 阅读 · 0 评论 -
windows环境下配置tensorflow_gpu版本——无需更改本地的cuda
大家可以在tensorflow学习中,可能会遇到使用tensorflow_gpu版本的安装,但是一般涉及到gpu的安装,就需要配置cuda,这个过程很麻烦且浪费时间,下面给出一个简单的方法配置环境。假设已经创建好虚拟环境,这里我们选取为例进行举例,注意python版本在3.6-3.9之间可以看出需要cudnn=7.6,cudatoolkit=10.1。原创 2024-01-26 01:32:00 · 567 阅读 · 0 评论 -
修改Jupyter Notebook 中的 Anaconda 环境以及内核显示名称流程
然后,使用 python -m ipykernel install --user --name yourenvname --display-name “New Display Name” 来重新安装内核,其中 “New Display Name” 是希望在 Jupyter Notebook 中显示的新名称。如果想改变 Jupyter Notebook 中内核的显示名称,需要先卸载然后重新安装内核,使用新的显示名称。原创 2024-01-14 04:17:48 · 676 阅读 · 0 评论 -
Jupyter Notebook之移除anaconda环境
使用得到的内核名称,运行 jupyter kernelspec uninstall yourenvname,其中 yourenvname 是要移除的内核的名称。这会删除整个环境,包括其所有的包和依赖。为确保内核已被正确移除,可以再次运行 jupyter kernelspec list 来确认该内核不再出现在列表中。如果选择删除环境,可以使用 conda env list 来确认该环境已从 Anaconda 环境列表中移除。首先,需要找出想要移除的内核的名称。这将显示所有安装的内核及其对应的路径。原创 2024-01-14 04:13:10 · 735 阅读 · 0 评论 -
Jupyter Notebook之添加anaconda环境
使用命令 python -m ipykernel install --user --name yourenvname --display-name “Python (yourenvname)” 添加新环境到 Jupyter。创建一个新的环境,使用命令如 conda create -n yourenvname python=x.x anaconda,其中 yourenvname 是您的环境名,x.x 是 Python 版本。使用命令 jupyter notebook 启动 Jupyter Notebook。原创 2024-01-14 04:10:00 · 832 阅读 · 0 评论 -
Jupyter Notebook之命令行执行Jupyter Notebook文件的命令行实现
总结:这段命令行指令使用 Jupyter 的 nbconvert 工具来自动执行一个名为 yourjuypter.ipynb 的 Jupyter Notebook 文件,并将执行后的结果保存在一个新的文件 executed.ipynb 中。这意味着所有的代码单元都将被运行,就像你在 Jupyter 环境中手动运行每个单元一样,而且执行结果也会被保存在输出文件中。yourjuypter.ipynb : 这是要转换和执行的原始 Jupyter Notebook 文件的名称。原创 2024-01-14 03:41:21 · 1293 阅读 · 0 评论