foxmail登录不了hotmail的解决办法 由于hotmail的信息安全保护,9.16号就在foxmail登录不了,因为习惯了foxmail,且微软改了验证方式,换要他们的客户端才行,就感觉好麻烦。账号管理里面删除之前的账号,新建账号,选择“Miscosoft 365 国际版”,然后输入账号密码,然后同意协议,这个问题就解决了。
使用python绘制森林图的教程 每一行代表一个特定的组别或子组,图中的点表示该组的效应估计值(例如相对风险、比值比等),而误差条表示估计值的置信区间(即估计值的不确定性范围)。每个点代表一个研究或亚组的效应估计值,左右两侧的误差条表示估计值的95%置信区间。如果是比值比(如OR、RR),通常大于1表示有增加的风险,小于1表示有降低的风险。分组标签:每一行都有相应的分组或亚组名称,表示具体分析的对象,比如不同的治疗方法、风险因素、患者特征等。如果某个组的效应估计值的置信区间不包含1,且估计值显著偏离1,意味着该组的效应显著。
windows更新错误0x80070643的懒人解决方法 但是,MediaCreationTool只有系统升级修复功能,并不能解锁Bitlocker。笔主因为电脑指纹用不了,就感觉是windows需要更新了,结果刚去windows更新,就出现错误0x80070643,遂查阅资料,费了2个小时终于解决,电脑指纹终于能用了。这个是系统分盘,尝试了以后,发现我的磁盘并不能压缩,于是只能采取最笨的方法,重装系统。若是需要保留个人文件和应用,不改变系统版本,通常如下图默认即可。若是需要设置,建议点击“更改保留的内容”,进行设置。之后将无法正常使用电脑,请做好相关准备。
论文浅读之Mamba: Linear-Time Sequence Modeling with Selective State Spaces 这篇论文提出了一种新型的"选择性状态空间模型"(Selective State Space Model, S6)来解决之前结构化状态空间模型(SSM)在离散且信息密集的数据(如文本)上效果较差的问题。Mamba 在语言处理、基因组学和音频分析等领域的应用中表现出色。其创新的模型采用了线性时间序列建模架构,结合了选择性状态空间,能够在语言、音频和基因组学等不同模式中提供卓越的性能。这种突破性的模型标志着机器学习方法的重大转变,显著提升了效率和性能。
使用html和css实现个人简历表单的制作 Ⅰ、表格整体的边框为1像素,单元格间距为0,表格中前六列列宽均为100像素,第七列 为200像素,表格整体在页面上居中显示;Ⅲ、第一行合并了7列;第六 行合并了六列;照片的单元格合并了四行。Ⅱ、前五行的行高为40像素,第六行的行高为80像素,排列方式均为居中显示;CSS文件{style.css}
CSS的基础语法和常见的语法简单归纳 通过 CSS,可以定义网页中的元素(如文字、图像、链接等)的外观和排版方式,包括字体、颜色、大小、间距、边框等。CSS 的设计目标是将内容和样式分离,使得网页的结构和表现分离开来,使得修改样式不需要修改 HTML 结构,这样可以提高网页的灵活性和可维护性。通过将 CSS 规则放置在独立的 CSS 文件中,可以提高代码的可维护性和组织性,使得 HTML 文件更加简洁和易读。在大括号 {} 内部,列出了一系列的属性-值对,每个属性定义了要应用的样式特性,值则指定了该特性的具体取值。/* 选择器组合 */
html的基础知识和常见的语法简单归纳 HTML是超文本标记语言(HyperText Markup Language)的缩写。它是一种用于创建网页的标记语言,用于描述网页的结构和内容。HTML通过一系列的标签(tag)来定义文档的各个部分,例如标题、段落、链接、图像等。浏览器读取HTML文档,并按照标记的指示将其呈现成可视化的网页。HTML通常与CSS(层叠样式表)和JavaScript一起使用,用于实现网页的样式和交互功能。比如上面的链接,就是菜鸟教程的html的链接。html学习学习还是挺有用的。默认上面的为1.html。
正则表达式之python中re模块的使用以及一些习题 它是一种强大的工具,用于在文本中搜索、匹配和编辑特定模式的字符串。正则表达式可以用来验证输入是否符合某种模式,提取文本中的特定信息,以及进行文本的替换和分割等操作。在计算机编程和文本处理中,正则表达式被广泛应用于各种领域,如文本搜索引擎、数据分析、文本编辑器等。尝试从字符串的起始位置匹配一个模式,返回一个匹配对象。在字符串中查找所有匹配项,返回一个包含所有匹配结果的迭代器。在字符串中查找所有匹配项,返回一个包含所有匹配结果的列表。在字符串中搜索第一个匹配项,返回一个匹配对象。
python科学计算库之Numpy库的使用的简单习题 Numpy是许多高级科学计算库的基础,包括Pandas(数据分析库)、Matplotlib(绘图库)、Scikit-learn(机器学习库)等,几乎成为了进行科学计算和数据分析的Python开发的必备库。:Numpy的核心是多维数组对象(ndarray),它提供了统一的接口来进行快速的数组计算。8.用numpy编程创建国际象棋盘,填充8*8矩阵,棋盘是正方形,由横纵各八格,颜色一深一浅交错排列的64个小正方格组成,深色为黑格(为0),浅色为白格(为1),如下图所示。并输出国际象棋盘对应的矩阵。
使用ESMFold提取蛋白质embedding的python实现 ESM Fold 利用了大规模的蛋白质序列数据和进化信息,通过深度神经网络模型进行训练,以预测蛋白质的二级结构、残基接触图和三维结构。该模型的预测能力取决于其训练数据的质量和数量,以及模型的架构和参数设置。示例的维度为(2,19840),因为我们将每个样本中的所有位置的 embedding 向量连接起来,得到每个样本的一个长向量表示。因此,这个数据张量的形状 (2, 62, 320) 提供了关于两个样本中蛋白质序列的信息,以及每个序列中每个位置的嵌入表示。确保序列的格式符合模型的要求。
形态学算法应用之重建开操作的python实现——数字图像处理 标准开操作即先进行腐蚀,然后对腐蚀结果利用同一个结构元进行膨胀;重建开操作即先进行腐蚀(这一步骤与标准开操作相同),然后利用该腐蚀结果作为标记,原图像作为模板,进行重建,整个过程叫做重建开操作。形态学开操作首先删除小物体,再通过膨胀试图恢复遗留前景重建开操作由于有了G的约束,解决了传统开操作高度依赖准确结构元才能正确恢复形状的缺点重建开操作的作用是:准确提取图像中与结构元(腐蚀时的,膨胀时用一般的就可以了)相似的模式。
形态学算法应用之连通分量提取的python实现——图像处理 连通分量的定义:令S是一个像素子集,如果S中的全部像素之间存在一个通路(m通路或8通路),则可以说两个像素p和q在S中是连通的。对于S中的任何像素p,S中连通到该像素的像素集称为S的连通分量。应用背景:在许多自动图像分析应用中,如何识别出图像中的不同之处,往往是从其二值图像中提取连通分量。流程:第一步,用阈值210对原图进行阈值操作,得到二值图像,可用函数cv2.threshold(img, 210, 1, cv2.THRESH_BINARY)实现;
形态学算法之边界提取的简单python实现——图像处理 边缘是图像的最重要的特征,。边缘是指周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。边缘提取,指数字图像处理中,对于图片轮廓的一个处理。对于边界处,灰度值变化比较剧烈的地方,就定义为边缘。也就是拐点,拐点是指函数发生凹凸性变化的点。二阶导数为零的地方。并不是一阶导数,因为一阶导数为零,表示是极值点。边缘提取:边缘检测的基本思想首先是利用边缘增强算子,突出图像中的局部边缘,然后定义象素的“边缘强度”,通过设置阈值的方法提取边缘点集。由于噪声和模糊的存在,监测到的边界可能会变宽或在某点处发生间断。
形态学操作之开操作与闭操作的python实现——数字图像处理 先用B对A进行腐蚀,将A中的小细节,小连通区域消除(注意这里是彻底消除),然后用B将A中没有被消除的地方恢复成原来的样子,最终只有被B完全消除掉的小细节没有了,A中其余的部分并没有改变。开操作是先进行腐蚀后进行膨胀的操作。:先用B对A进行膨胀,将A的细节放大,将A中本不能够连接起来的地方连接起来,然后用B对结果进行腐蚀,将被放大的地方还原(注意,已经被连接起来的地方不会在被腐蚀抹掉)先用B对A进行腐蚀,再用B对其结果进行膨胀,并不会得到原来的A,即膨胀与腐蚀并不像+和-一样是一对完全互补的操作。
pytorch调用多个gpu训练,手动分配gpu以及指定gpu训练模型的流程以及示例 当使用上面的这个命令时,PyTorch 会检查系统是否有可用的 CUDA 支持的 GPU。如果有,它将选择默认的 GPU(通常是第一块,即 “cuda:0”)。这意味着,即使系统中有多块 GPU,这条命令也只会指向默认的一块。torch.device(“cuda” if torch.cuda.is_available() else “cpu”) 这个命令在多 GPU 系统中是有效的,但它默认只指向一块 GPU(通常是 “cuda:0”)。要在多 GPU 系统中高效地利用所有 GPU,需要采用更复杂的设置。
docker导出conda环境的流程 在这个示例中,替换 your-env-name 为 Conda 环境名称,your-image-name 为想要的 Docker 镜像名称。这将创建一个包含 Conda 环境的 Docker 镜像,可以在任何支持 Docker 的机器上运行它。在 Dockerfile 所在的目录运行 docker build -t your-image-name . 来构建镜像。要在 Docker 中导出 Conda 环境,需要创建一个 Docker 镜像,该镜像包含 Conda 环境。
Linux 系统导出Conda 环境到 Windows 系统的流程 连接成功后,使用 put /path/to/environment.yml /path/to/destination 命令将文件上传到目标系统。其中 /path/to/environment.yml 是源系统上文件的路径,username 是在目标系统的用户名,windows_host 是目标系统的主机名或IP地址,/path/to/destination 是目标系统上文件的目的路径。这就是本地 IP 地址。:创建环境后,在 Windows 系统上激活环境并进行测试,以确保所有必要的包都按预期工作。