ml&dl
文章平均质量分 92
筱筱西雨
一个不知名菜鸟
展开
-
使用ESMFold提取蛋白质embedding的python实现
ESM Fold 利用了大规模的蛋白质序列数据和进化信息,通过深度神经网络模型进行训练,以预测蛋白质的二级结构、残基接触图和三维结构。该模型的预测能力取决于其训练数据的质量和数量,以及模型的架构和参数设置。示例的维度为(2,19840),因为我们将每个样本中的所有位置的 embedding 向量连接起来,得到每个样本的一个长向量表示。因此,这个数据张量的形状 (2, 62, 320) 提供了关于两个样本中蛋白质序列的信息,以及每个序列中每个位置的嵌入表示。确保序列的格式符合模型的要求。原创 2024-03-04 01:39:03 · 1841 阅读 · 0 评论 -
一些深度学习训练过程可视化以及绘图工具
VisualDL是PaddlePaddle的可视化分析工具,提供各种图表来显示参数的趋势,并可视化模型结构、数据样本、张量直方图、PR曲线、ROC曲线和高维数据分布。为了实现这些可视化,需要在训练循环中添加代码来记录相应的数据(例如,损失值、准确率、权重等),然后使用合适的可视化工具来展示这些数据。这个工具通常提供了一个简单易用的界面,允许用户通过图形界面选择和排列不同的层(如卷积层、池化层、全连接层等),从而设计和展示他们的网络架构。然而,它更多的是用于可视化和设计,而不直接涉及网络的实际训练和测试。原创 2023-12-30 04:39:38 · 7967 阅读 · 2 评论