阵列天线中阵元间距、波程差与相位差之间的关系
其中:d为阵元间距,θ为雷达与被测物体的角度。
由三角函数关系可知:
波程差:
Δ
d
=
d
sin
θ
波程差:\Delta d=d \sin \theta
波程差:Δd=dsinθ
相位差:
Δ
φ
=
w
∗
τ
=
2
π
f
∗
τ
相位差: \Delta \varphi=w^{*} \tau=2 \pi f^{*} \tau
相位差:Δφ=w∗τ=2πf∗τ
因为两个阵元接收回波数据的时延差为:
τ
=
d
sin
θ
c
\tau=\frac{d \sin \theta}{c}
τ=cdsinθ
则
Δ
φ
=
w
∗
τ
=
2
π
f
∗
τ
=
2
π
f
d
sin
θ
c
=
2
π
d
sin
θ
λ
\Delta \varphi=w^{*} \tau=2 \pi f^{*} \tau=2 \pi f \frac{d \sin \theta}{c}=2 \pi \frac{d \sin \theta}{\lambda}
Δφ=w∗τ=2πf∗τ=2πfcdsinθ=2πλdsinθ