2021.4.3 最长公共子序列
题目描述
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。
思路
典型的动态规划问题,可以建立一个二维数组dp[ ][ ],这里我多建立了一行一列是为了避免边界问题。dp[ i ][ j ]的意义是text1 的前 i 个字符与 text2 的前 j 个字符的最长公共子序列的长度,显然我们可以知道当 text1 的 第 i 个字符与 text2 的第 j 个字符相等时,dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ] + 1;但是不相等时 ,dp[ i ][ j ]应该是等于dp[ i - 1 ][ j ]与dp[ i ][ j - 1 ]两者较大的那个的,而初始条件就是当text1与text2都不取元素时,最长子序列为0。从而得到以下代码:
public int longestCommonSubsequence(String text1, String text2) {
int[][] dp = new int[text1.length() + 1][text2.length() + 1];
for(int i = 1;i<text1.length() + 1;i++){
for (int j = 1; j < text2.length() + 1; j++) {
if(text1.charAt(i - 1) == text2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else {
dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);
}
}
}
return dp[text1.length()][text2.length()];
}